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1	 Introduction
Formation of soil aggregates is a function of physical 
forming forces (Grosbellet et al., 2011; Li and Fan, 2014; 
Hu et al., 2015). There are several ionic forces involved 
in formation of floccules, domains, and aggregates. 
Principal among these are inter and intramolecular forces, 
electrostatic and gravitational forces (Lal and Shukla, 
2004). There are two internal forces that dominate soil 
particles interaction in aqueous solution: the electrostatic 
repulsive force and the van der Waals attractive force 
(Zhang et al., 2012; Chinchalikar et al., 2012). The 
mechanism of aggregation involves exogenous driving 
forces and the endogenous interactive forces arising from 
the soil-water interaction. Consequently, the specific 
arrangement of soil particles as observed in the field is 
dictated by the nature of exogenous and endogenous 
forces involved. Formation and stability of natural soil 
aggregates are affected by dozens of different factors 
and their individual effects are hardly distinguishable 
(Amézketa, 1999; Józefaciuk and Czachor, 2014). 
Aggregate stability is affected by soil intrinsic factors as 
electrolyte concentration, types of exchangeable cations, 

clay mineralogy, contents of carbonates, soil organic 
matter, Fe and Al oxides (Amézketa, 1999). All depends 
on climate, soil-forming processes, biological factors and 
soil management practices (Tisdall and Oades, 1982; 
Šimanský, 2011; Balashov and Buchkina, 2011).

Since there are differences in formation and stabilization 
of soil aggregates with dependence on soil type 
(Šimanský and Bajčan, 2014) and land use, the purpose of 
this study was to make clear which components stabilize 
the individual size fractions of water-stable aggregates 
in forest and agricultural soils. In our study, water-
stable aggregates (WSA) of different size classes were 
separated both from three different soil types (Cambisol, 
Luvisol, Chernozem) and different land use (forest soil, 
agricultural soil). We studied: (i) the differences in WSA 
with dependence on soil types and land use, (ii) the 
relationships between soil organic carbon, labile carbon, 
particle-size distribution and individual size classes of 
WSA, and (iii) the relationships between soil organic 
carbon, labile carbon, and particle-size distribution 
within WSA.
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2	 Material and methods
2.1	 Study sites 
This study was done using soil samples collected 
from three localities. First locality is situated near Brno 
(Czech Republic) and is called Soběšice (49° 14‘ 52.3“ N, 
16°  36‘  33.9 “E). The parent material of the investigated 
region are granodiorites. The mean annual temperature 
is 8 °C and the mean annual precipitation is 530 mm. 
Second and third localities are situated in the western 
part of Slovakia: Báb (48° 18‘ 5.50“ N, 17° 53‘ 56.59“ E) is 
located near the town of Nitra; and Vieska nad Žitavou 
(48° 19‘ 4.88“ N, 18° 22‘ 3.17“ E) is situated near the town 
of Zlaté Moravce. The parent material in Báb locality is 
calcareous loess, the mean temperature 10.2 °C and the 
total mean annual precipitation is 539 mm (Szombathová 
and Zaujec, 2001). The soils in Vieska nad Žitavou were 
developed from Neogene clays, sands and rubble sands 
which are almost all covered by wind-deposited loess. 
The mean temperature in the area is 10.6 °C and the total 
mean annual precipitation is 541 mm (Polláková, 2013).

At each locality two soil pits were dug: one on forest soils 
and the second one on agricultural soils. In total, 6 soil 
pits in 3 locations were prepared. On the whole-profile 
soil morphology the soils were classified according to 
the World Reference Base for Soil Resources (WRB, 2015) 
as a Dystric Cambisol, a Haplic Luvisol and a Cambic 
Chernozem at the localities Soběšice, Vieska nad Žitavou 
and Báb, respectively. Studied soils in A horizons had 
acid, neutral and weakly acid pH in Soběšice, Vieska 
nad Žitavou and Báb, respectively. All soils are loamy, 
with average content of clay 22.2%, 27.5% and 26.0%, 
in Soběšice, Vieska nad Žitavou and Báb, respectively. 
In forest soil, the content of soil organic carbon in 
A  horizons was: 4.15% in Dystric Cambisol, 4.66% in 
Haplic Luvisol and 4.51% in Cambic Chernozem. In arable 
soils the content of soil organic carbon was less than half 
compared to forest soil (2.21% in Dystric Cambisol, 1.27% 
in Haplic Luvisol and 1.93% in Cambic Chernozem). More 
dates on soil characteristics of studied soils is published 
in Polláková et al. (2017).

2.2 Description of study localities
Soběšice: (1) Forest soil: 101 years old mixed forest 
stand Quercus petraea /Mattuschka/ Liebl. 69%, Carpinus 
betulus L. 22%, and Pinus sylvestris L. 9%. (2) Agricultural 
soil: extensive meadow dominated by Poa pratensis L. 
and Dactylis glomerata L.

Báb: (3) Forest soil: more than 200 years old deciduous 
forest with predominance of Quercus robur, L. and 
Carpinus betulus, L. (4) Agricultural soil: arable land, yearly 
ploughed for minimally 100 years. Maize was grown 
during sampling on the field; forecrop had been winter 
wheat.

Vieska nad Žitavou: (5) Forest soil: more than 70 years 
old monoculture growth of Thuja occidentalis L. (6) 
Agricultural soil: arable land, yearly ploughed for 
minimally 100 years. Maize was grown on the field at the 
time of sampling; the forecrop had been sunflower.

2.3	 Soil sampling and analyses 
Soil samples were taken from topsoil (to 0.3 m). Roots and 
litter were removed from the samples before mechanical 
and chemical treatment. Then the samples were air-dried 
at laboratory temperature and ground. In this study, each 
soil sample was divided into six particle size fractions by 
the pipette method (Hrivňáková et al., 2011). The content 
of soil organic carbon (SOC) was determined using the 
dichromate-sulfuric acid oxidation by the Tyurin method 
(Orlov and Grishina, 1981). The fractional compositions of 
humic substances according to Tyurin in modification of 
Ponomareva-Plotnikova (Orlov and Grishina, 1981) were 
determined as well. The extinctions of humic substances 
and humic acids were measured at 465 and 650 nm by 
6400 Spectrophotometer (Jen Way), on the base of which 
the colour quotients of humic substances (Q4/6

HS) and 
humic acids (Q4/6

HA) were calculated.

Soil samples for aggregates determination were carefully 
collected using a spade. By their mixing we obtained an 
average representative sample from each of six study 
sites. Roots and large pieces of litter were removed. 
Samples were transported to the laboratory and large 
clods were gently broken up along natural fracture lines. 
After air-drying at laboratory temperature we obtained 
undisturbed soil samples. To determine water-stable 
aggregates (WSA) we used the AS 200 device Retsch®. 
Wet sieving was done by four sieves with mesh diameter 
of 5, 3, 1 and 0.25 mm. After the sieving process, the size 
classes were transferred from the individual sieves to 
filter paper and dried in a drying cabinet at 45  °C. The 
material retained was quantified in each sieve except 
micro-aggregates, for which the content was calculated 
as the difference between total weight of the soil sample 
and the sums of the macro-aggregates. The size classes of 
water-stable aggregates >0.25mm are macro-aggregates 
(WSAma) and <0.25 mm are micro-aggregates (WSAmi). 
Mechanical and chemical analyses were carried out in all 
size classes of WSA. Particle-size distribution was analysed 
by pipette method (Hrivňáková et al., 2011). Total organic 
carbon in WSA (SOC in WSA) was determined by the 
Tyurin method, labile carbon by the Loginov method 
(Loginow et al., 1987).

2.4	 Statistical analyses
The statistical analysis was performed using the 
Statgraphics Centurion XV.I programme (Statpoint 
Technologies, Inc., USA). A one-way ANOVA model was 
used for individual comparisons of different aggregate 
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fractions at P ≤0.05, with separation of the means by the 
LSD test. Relationships between SOC, CL, particle-size 
distribution and individual size classes of WSA as well as 
between SOC and CL and particle-size distribution within 
WSA were then determined. 

3	 Results and discussion
3.1 Contents of water-stable aggregates
Land use in individual soil types had statistically 
significant influence on changes in size classes of WSAma. 
Mainly in Cambisol in size classes of WSAma 1–0.25, 3–1 
and 5–3 mm as well as in Luvisol in WSAma 1–0.25 mm 
the most significant differences were observed (Figure 1). 
Generally, in all soil types under forest the content of WSAma 
>5 mm was higher than in agricultural soils. In opposite, 
higher content of WSAmi in agricultural than forest soils 
was observed. Almost five times higher content of WSAma 
5–0.25 mm was observed in Chernozem under forest 
than arable soil. The similar trend was found in Luvisol. 
Intensive cultivation disrupts soil aggregates, compacts 
soil and disturbs plant and animal communities, what 
contribute to the aggregation and decreasing of soil 
organic matter (Plante and McGill, 2002). On the other 
hand, higher contents of macro-aggregates than micro-
aggregates were observed in forest soils in comparison 
to agricultural soils (Khurakov and Kharin, 2012) which 
corresponded with our findings.

Figure 1	 Contents of water stable aggregates in the 
investigated soils

3.2	 Relationships between soil chemical properties, 
	 texture composition and individual size classes 
	 of water-stable aggregates as well as within 
	 water-stable aggregates
The most important internal factor affecting the binding 
soil mineral particles together is soil organic matter 
(SOM) (Bronic and Lal, 2005; Krol et al., 2013; Šimanský 
and Bajčan, 2014) therefore we tested the single 
relationships between individual size classes of WSA 
and SOM components. Statistically significant linear 
relationships between the WSAma >1 mm (positive) and 
SOC as well as between the WSAmi (negative) and SOC 

were observed. Macro-aggregate stability was positively 
correlated with SOC as a result of a strong bond between 
the colloidal components of soils (Blavet et al., 2009). 
We determined positive linear dependences between 
SOC and CL in WSAma and individual size classes of 
WSAma 5–1 mm and on the other hand, lower content 
of SOC and CL in WSAmi resulted in higher content of 
WSAmi when all studied soil types and land uses were 
evaluated together. Statistically significant linear 
relationships between content of humic acids (HA) and 
WSAma (negative) and WSAmi (positive) were determined 
which means that WSAmi were stabilised mainly by highly 
condensed components of organic matter, i.e. humic 
acids, whereas WSAma mostly by labile SOM components, 
which is indicated by highly significantly positive linear 
dependence between CL in WSA and WSAma 5–1 mm. 
With the increased content of fulvic acids (FA), the 
content of WSAmi increased and content of WSAma >3 mm 
decreased. Higher humus quality (HA : FA ratio) resulted 
in increase of WSAma >5 mm and in decrease the other 
sizes of WSAma, significantly in size class 1–0.25 mm and 
insignificantly in other micro and macro-aggregates 
sizes. When all studied soils were evaluated together, 
higher humus stability positively affected stabilization of 
WSAmi. On the other hand, statistically significant linear 
(positive) relationships between Q4/6

HS and Q4/6
HA and 

WSAma >3 mm were determined. The same findings were 
published by Šimanský et al. (2013). 

When the studied soils were investigated depending 
on land use (Table 1), some differences were observed 
compared to soils evaluated together, however, positive 
correlations between SOC and WSAma 5–3 mm were 
determined. In forest soils, positive correlation between 
SOC and WSAmi and negative correlation with WSAma 
>5 mm were found. Opposite results were obtained in 
agricultural soils. Higher content of SOC resulted in higher 
content of WSAma >3 mm and also lower content of WSAmi. 
In agricultural soils higher humus quality was connected 
with higher content of WSAmi and lower content of 
WSAma compared to forest soils, where higher humus 
quality was negatively correlated with WSAmi. This means 
that micro-aggregates stability was highly significantly 
influenced by FA, as well as labile components of SOM. 
High humus quality had highly significantly negative 
effect on the content of WSAma, which means that with 
increased humus quality, the WSAma stability decreased. 
The fact that HA was not essential for macro-aggregates 
stability was confirmed by their negative correlations 
between WSAma and the content of HA. On the other 
hand, the stability of WSAma 3–0.25 mm was highly 
positively influenced by FA, therefore we consider that FA 
is substantial in WSAma stability in the studied agricultural 
soils. Since FA is less condensed than HA, being 
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exposed to oxygen and microorganisms they are more 
susceptible to mineralization that leads to disintegration 
of soil macro-aggregates. Compared to agricultural soils, 
the situation in forest soils was considerably different. 
Increased humus quality had highly significantly positive 
effect on the content of WSAma >5 mm but negative on the 
content of WSAma <3 mm as well as WSAmi. The obtained 
results imply that, in the studied forest soil, HA were the 
most important factors influencing the stability of WSAma 
>5 mm, whereas WSAma in size 3–1 mm and WSAmi were 
stabilised mainly by fulvic acids. The strongest bindings 
are formed at the creation of humus substances (Piccolo 
and Mbagwu, 1990), and they gradually get weaker. A 
higher content of CL in WSAmi had a positive effect on 
stabilization of WSAmi in forest soils. This was not observed 
in agricultural soils. On the other hand, in agricultural 
soils SOC in WSA positively correlated with WSAma >3 
mm; however, the above-mentioned correlation was not 
found in forest soils. We concluded that in agricultural 
soils the stabilization of WSAma was associated with 
stable SOM as it has been published in Šimanský et al. 
(2014). In forest soils, a higher content of CL in WSAma had 
a negative effect on the content of WSAma. However, clay 
particles can form a protective coatings around the labile 
forms of organic matter which may inhibit decomposition 
of the SOM inside aggregates by the bacterial colonies 
(Oades and Waters, 1991); this has a positive effect on soil 
structure stability (Le Bissonnais, 1996).

Soil texture is another important factor in aggregation 
(Lal and Shukla, 2004; Paradelo et al., 2013). Evaluating 
all soils together, particle-size distribution was not the 
substantial factor affecting aggregate stability. When all 
soil types were investigated separately with dependence 
on land use, particle-size distribution had statistically 
significant effect on the stability of individual size classes 
of WSA (Table 2). Soil management practices or land use 
can influence clay dispersability, in particular via impacts 
on organic carbon contents and aggregation (Burt et 
al., 2001; Shaw et al., 2002). He et al. (2005) and Li et al. 
(2006) proved that sand content (1-0.05 mm) of cropland 
soils is higher than that of grassland soils. The return of 
plant residues to grassland soil along with no ploughing 
results in soil organic carbon enrichment and accelerates 
formation of fine soil particles, which leads to a relatively 
higher clay content in grassland soil than cropland soil. 
In our case, the forest and agricultural soils contained 
least sand particles in the WSAmi. In agricultural soils, the 
fraction of coarse sand (>0.25 mm) was more represented 
in WSAma over 1 mm and coarse sand was less represented 
in WSAmi. In forest soils, higher contents of fine sand 
(0.25–0.05 mm) and coarse silt (0.05–0.01 mm) resulted in 
higher content of WSAma 3-0.25 mm. In agricultural soils, 
coarse silt and clay (<0.002 mm) positively correlated 
with WSAmi and negatively with WSAma what means that 
formation and stabilization of WSAma is not a function 
of particle-size distribution alone (relationships are 

Table 1	 Correlation coefficients between soil organic matter parameters and individual size classes of water-stable 
aggregates

SOC HA FA HA : FA Q4/6
HS Q4/6

HA SOC in WSA CL in WSA

Forest soils

WSAmi 0.984*** -0.331 0.997*** -0.914*** -0.157 -0.385 0.367 0.541*

>5 -0.868*** 0.628* -0.965*** 0.997*** 0.478 0.671** -0.388 -0.557*

3-5 0.782*** 0.492 0.599* -0.297 0.640* 0.441 0.146 0.251

1–3 0.489 -0.939*** 0.693** -0.894*** -0.862*** -0.957*** 0.331 0.453

1–0.25 0.260 -0.995*** 0.495 -0.757*** -0.960*** -0.999*** 0.271 0.359

WSAma -0.984*** 0.331 -0.997*** 0.914*** 0.157 0.385 -0.367 -0.541*

Agricultural soils

WSAmi -0.530* 0.687** -0.547* 0.996*** -0.673** -0.668** -0.498 -0.306

>5 0.656** -0.793*** 0.410 -0.997*** 0.549* 0.543* 0.587* 0.357

3-5 0.637* -0.777*** 0.433 -0.999*** 0.570* 0.564* 0.573* 0.349

1–3 0.453 -0.620* 0.619* -0.985*** 0.736** 0.731** 0.443 0.274

1–0.25 -0.016 -0.182 0.914*** -0.790*** 0.967*** 0.965*** 0.090 0.067

WSAma 0.530* -0.687** 0.547* -0.996*** 0.673** 0.668** 0.498 0.306

*P <0.05; ** P <0.01; *** P <0.001
WSAmi – water-stable micro-aggregates, WSAma – water-stable macro-aggregates, SOC – soil organic carbon, HA : FA – humic to fulvic acids ratio, 
Q4/6

HS – colour quotient of humic substances, Q4/6
HA – colour quotient of humic acids, HA – content of humic acids, FA – content of fulvic acids, SOC 

in WSA – soil organic carbon in water-stable aggregates, CL in WSA – labile carbon in water-stable aggregates
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probable more complicated). For example, a several 
works (Needelman et al., 1999; Neufeldt et al., 2002) 
reported positive relationship between clay and SOM 
content. According to Santos et al. (1997), clay flakes 
form a protective coating against the next colony of 
bacteria, which would inhibit the decomposition of SOM 
located inside. This is positively reflected in stabilization 
of smaller aggregates (Jastrow, 1996). We determined 
correlations between SOC and CL in WSA and particle-
size distribution of individual size classes of WSA. When 
all soils were evaluated together as well as separately, no 
significant correlations between SOC and CL contents in 
WSA and particle-size distribution of WSA were observed.

4	 Conclusions
Higher contents of water-stable macro-aggregates 
than water-stable micro-aggregates were recorded 
in forest soils in comparison to agricultural soils. We 
concluded that in agricultural soils the stabilization of 
water-stable macro-aggregates was associated with 
stable soil organic matter components. In forest soils, a 
higher content of labile carbon in water-stable micro-
aggregates had a positive effect on stabilization of 
water-stable micro-aggregates. In forest soils, higher 
contents of coarse particles resulted in higher contents 
of water-stable macro-aggregates in size classes 3-0.25 
mm. In agricultural soils, the content of fine particles 
increased the content of water-stable micro-aggregates 

and the content of coarse particles increased the content 
of water-stable macro-aggregates. 
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