Original Paper

Fatty acid profile analysis of grape by-products from Slovakia and Austria

Renata Kolláthová^{1*}, Ondrej Hanušovský¹, Branislav Gálik¹, Daniel Bíro¹, Milan Šimko¹, Miroslav Juráček¹, Michal Rolinec¹, Reinhard Puntigam², Julia Andrea Slama², Martin Gierus²

¹Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Department of Animal Nutrition, Slovakia

Article Details: Received: 2020-02-05 Accepted: 2020-03-16 Available online: 2020-06-30

https://doi.org/10.15414/afz.2020.23.02.78-84

(cc) BY Licensed under a Creative Commons Attribution 4.0 International License

The objective of the present study was to determine the fatty acid profile of grape pomace, grape stem and grape bunch of three different cultivars of *Vitis vinifera* sp. (Green Veltliner, Pinot Blanc and Zweigelt) from two countries as a possible sources for animal nutrition. Fatty acid profile analysis was performed using the Agilent 6890 A GC machine. Significant differences (P < 0.05) in fatty acid content of analyzed samples were detected between the countries, as well as between the cultivars within countries. Grape pomaces and grape bunches were rich in polyunsaturated fatty acids (70.91–71.86%), represented mainly by linoleic acid (69.79–70.32%), and low in saturated fatty acids (12.42–12.96%). Grape stems were characterized by a high saturated fatty acids content (24.46–30.85%), but on the other hand, these samples had the highest α -linolec acid concentration (9.98–14.52%). Oleic acid (12.24–15.17%) was the most abundant from monounsaturated fatty acids (12.69–15.33%) in all the analyzed samples. These results indicate a strong impact of the grape variety and location on the fatty acid profile of grape by-products and their potential to be evaluated as feed additives with high polyunsaturated fatty acids concentration in animal nutrition.

Keywords: grape pomace, grape stalk, fatty acids, PUFA, SFA

1 Introduction

Grape industry generates a large amount of by-products with problematic disposal which can cause serious environmental issues (Botella et al., 2005, Rondeau et al., 2013, Bekhit et al., 2016). The two most abundant by-products of grape processing are pomace and stalks (Makris et al., 2007). Grape pomace represents about 20–25% of the weight of wine grapes (Yu and Ahmedna, 2013), the amount of stems can vary between 1.4–7% (Souquet et al., 2000). The nutritional value and the digestibility of these by-products is, due to high fiber content, generally low, but many experiments showed, that these products can be used a substantial source of certain nutrients and biologically active compounds in animal nutrition (Viveros et al., 2011, Teixeira et al., 2014, Chamorro et al., 2015, Domínguez et al., 2016, Kerasioti

el al., 2017). They can also help to reduce production costs and to create innovative feed mixtures in order to increase the quality of animal products (Tangolar et al., 2009, Fontana et al., 2013, Guerra-Rivas et al., 2016, Kafantaris et al., 2018). According to Botella et al. (2005) the incorporation of winery by-products in livestock feeds may also positively affect the environment by reducing the toxic impact of their inappropriate disposal by leaving on open spaces or burning. Fatty acids of grape by-products, particularly those of grape pomace, are characterized with high concentrations of linoleic and oleic acids (Yi et al., 2009). Due to this fact, by-products of wine industry could positively influence the fatty acid profile of milk and meat, with a perspective of obtaining less saturated and healthier animal products (Nistor et al., 2014, Guerra-Rivas et al., 2016, Chedea et al., 2018). On this regard the objective

²University of Natural Resources and Life Sciences, Institute of Animal Nutrition, Livestock Production and Nutrition Physiology, Department of Agrobiotechnology, Vienna, Austria

^{*}Corresponding Author: Renata Kolláthová, Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Department of Animal Nutrition, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia; e-mail: xkollathova@uniag.sk

of this study was to determine and compare the fatty acid profile of grape pomace, grape stems and grape bunches from two countries as possible sources of these nutrients for animal nutrition.

2 Material and methods

The pomace, as a by-product of juice pressing in wine industry, mainly contained of residual grape skin, seeds and pulps. Grape stems were only rachis, peduncle and pedicels after removing grape berries. In total, 54 samples from 3 varieties from 6 different locations were analysed. Laboratory samples were processed in the Laboratory of Quality and Nutritive Value of Feeds (Department of Animal Nutrition, Slovak University of Agriculture in Nitra) using standard laboratory procedures and principles (EC No 152/2009). Prior to evaluating the fatty acid profile of analyzed samples, triglycerides in their lipid fraction to glycerol and free fatty acids were hydrolyzed. Free fatty acids were then converted to methylesters (FAMEs) according to the following procedure. Solution was diluted by hexane (10 ml) and 2 N potassium hydroxide in methanol (1 ml). Analytic tube was heated in water bath (30 seconds at 60 °C). After 1 minute 1 N hydrochloric acid (2 ml) was added. The top layer was transmitted (2 ml) to autosampler vial containing ninhydrin (Na₂SO₄). On a specialized analytical column (Supelco 47885-U) the separation of FAMEs, based on the carbon number and level of saturation, took place. FAMEs with the shortest carbon chain (the lowest boiling point) were separated first. Subsequently, the individual fatty acids were identified by a flame ionization detector (FID). Analyis were performed on gas chromatograph Agilent 6890A GC (Agilent Technologies, USA). The fatty acids profile of grape by-products was determined as percentage of crude fat. Results were statistically evaluated with IBM SPSS v. 20.0. Descriptive statistics using one-way ANOVA were generated. Then, statistical significance of results were separated using Tukey test.

3 Results and discussion

The analyzed grape by-products were characterized by their specific fatty acid (FA) profiles (Table 1 and Table 2). Despite the significant (P < 0.05) differences between the countries, as well as between the cultivars within countries, some similarities in the fatty acid composition of grape pomace, stems and bunches were detected. The samples mainly composed of polyunsaturated fatty acids (PUFA), mostly represented by linoleic acid, especially in grape pomace and grape bunches. This result is consistent with the grape seed content of these products as a source of linoleic acid rich grape oil (Fernandes et al., 2013, Yousefi et al., 2013, Hussein and Abdrabba, 2015, Ovcharova et al., 2016). In grape stems

interesting content of α -linoleic acid was detected. Oleic acid, as a monounsaturated fatty acid (MUFA), was the most abundant in all the studied by-products. Grape stems contained the highest amount of saturated fatty acids (SFA), mainly palmitic and stearic acid. The high content of palmitic acid in pomaces may be due to surplus saturated compounds in their waxy structure (Gülcü et al., 2019). Arachidonic and behenic acid were present in pomaces below 1%, whereas in bunches these fatty acids, except two samples (Pinot Blanc and Zweigelt from Slovakia), were not found. This corresponds with low levels of SFA in grape seeds (Tangolar et al., 2009; Gül et al., 2013, Mironeasa et al., 2016, García-Lomillo and Gonzáles-San José, 2017).

The FA profile of grape pomace is well documented in the literature, but only a limited number of papers has been published on the content of FA in grape stem and grape bunch. In red grape pomace Yi et al. (2009) found average values of 21.2% SFA, 14.4% MUFA and 62.7% PUFA. Ribeiro et al. (2015) reported an average PUFA concentration in grape pomaces around 72.86% with the predominance of linoleic (60.04%) and α -linolenic (13.64%) acid, followed by oleic (12.97%) and palmitic (6.72%) acid. Stearic acid was present in the analyzed pomaces below 5%. In comparison with Guerra-Rivas et al. (2016) lower amounts of all the FA were detected for grape pomaces. On the other hand, Tsiplakou and Zervas (2008) and Gülcü et al. (2019) measured higher content of the same FA, except for linoleic acid. Russo et al. (2017) studied the FA profile of six grape pomaces with very similar results as obtained in this experiment. These authors also reported that grape stalk contained 21% palmitic, 4.6% stearic, 10.7% oleic, 35.4% linoleic, 13.4% α -linoleic and 11.3% behenic acid.

The total comparison of FA profile of grape by-products from Slovakia and Austria is shown in Table 3. The grape pomace samples from both countries had significantly different (P < 0.05) content of all the studied FA. In the case of grape stems significant differences (P < 0.05) for oleic, α-linoleic, arachidic and behenic acids concentration, as well as overall MUFA content, were found. The grape bunches from two counties significantly differed (P < 0.05) in stearic, oleic, linoleic and α -linoleic acids content. A justification for this differences between the FA content of grape-by products could be related to different agro-climatic conditions of the growing regions (García-Lomillo and Gonzáles-San José, 2017). Bennemann et al. (2016) state, that the quality of grapes is greatly influenced by factors such as soil, weather, temperature, humidity and solar radiation.

 Table 1
 Fatty acid profile of grape by-products from Slovakia (% fat-1)

Palmittic acid pomace 8.64 ± 0.11* 8.13 ± 0.01* 7.69 ± 0.02* stems 15.80 ± 0.45* 10.68 ± 0.49* 13.14 ± 0.08* pomace 3.56 ± 0.05* 3.95 ± 0.00* 4.03 ± 0.00* 3.56 ± 0.05* 3.95 ± 0.00* 4.03 ± 0.00* 4.	,	. 3.77	Green Veltliner	Pinot Blanc	Zweigelt
Palmitic acid stems 15.80 ±0.45° 10.68 ±0.49° 13.14 ±0.68 bunch 8.85 ±0.02° 8.57 ±0.10° 7.47 ±0.05° pomace 3.56 ±0.05° 3.95 ±0.00° 4.03 ±0.00° 3.56 ±0.05° 3.95 ±0.00° 4.03 ±0.00° 3.56 ±0.05° 3.95 ±0.00° 4.03 ±0.00° 3.68 ±0.05° 3.95 ±0.00° 4.03 ±0.00° 3.50 ±0.00° 4.00 ±0.00° 5.00 ±			Mean ±Standard Deviati	on	1
bunch 8.85 ±0.02* 8.57 ±0.10* 7.47 ±0.05* pomace 3.56 ±0.05* 3.95 ±0.00* 4.03 ±0.00* stems 3.52 ±0.21* 4.03 ±0.18* 3.86 ±0.05* bunch 3.42 ±0.02* 4.06 ±0.03* 4.17 ±0.01* pomace 10.91 ±0.07* 17.52 ±0.02* 16.34 ±0.02* collected stems 14.34 ±0.92* 16.12 ±0.12* 15.04 ±0.31* bunch 10.21 ±0.01* 17.09 ±0.15* 17.03 ±0.06* bunch 10.21 ±0.01* 17.09 ±0.15* 17.03 ±0.06* tems 3.68 ±1.14* 57.19 ±1.21* 45.47 ±1.05* bunch 74.40 ±0.03* 67.66 ±0.25* 68.90 ±0.04* tems 15.17 ±0.62* 5.74 ±0.13* 9.03 ±0.62* bunch 2.38 ±0.03* 1.22 ±0.06* 1.01 ±0.05* bunch 2.38 ±0.03* 1.22 ±0.06* 1.01 ±0.05* bunch ND* 0.24 ±0.00* 0.24 ±0.00* Arachidic acid stems 3.21 ±0.07* 1.21 ±0.03* 2.89 ±0.09* bunch ND* ND ND ND pomace 0.19 ±0.01* 0.11 ±0.00* 0.11 ±0.00* bunch ND ND ND ND pomace 74.83 ±0.25* 68.37 ±0.02* 69.52 ±0.02* bunch 76.78 ±0.03* 68.88 ±0.18* 69.91 ±0.08* bunch 76.78 ±0.03* 68.88 ±0.18* 69.91 ±0.08* bunch 10.21 ±0.01* 17.39 ±0.15* 15.04 ±0.31* bunch 10.21 ±0.01* 17.39 ±0.15* 17.34 ±0.06* bunch 1	Palmitic acid	pomace	8.64 ±0.11a	8.13 ±0.01 ^b	7.69 ±0.02°
Stearic acid Stems 3.56 ± 0.05° 3.95 ± 0.00° 4.03 ± 0.05° bunch 3.42 ± 0.02° 4.06 ± 0.03° 4.17 ± 0.01° bunch 3.42 ± 0.02° 4.06 ± 0.03° 4.17 ± 0.01° pomace 10.91 ± 0.07° 17.52 ± 0.02° 16.34 ± 0.02° bunch 10.21 ± 0.01° 17.09 ± 0.15° 17.03 ± 0.06° bunch 10.21 ± 0.01° 17.09 ± 0.15° 17.03 ± 0.06° bunch 5.21° 5.02° 66.75 ± 0.01° bunch 5.21° 5.02° 67.59 ± 0.02° 66.75 ± 0.01° bunch 74.40 ± 0.03° 67.66 ± 0.25° 68.90 ± 0.04° bunch 74.40 ± 0.03° 67.66 ± 0.25° 68.90 ± 0.04° bunch 2.38 ± 0.03° 1.22 ± 0.06° 1.01 ± 0.05° bunch 2.38 ± 0.03° 1.22 ± 0.06° 1.01 ± 0.05° bunch 8.23 ± 0.03° 1.22 ± 0.06° 1.01 ± 0.05° bunch ND° 0.24 ± 0.00° 0.25 ± 0.00° bunch ND° 0.24 ± 0.00° 0.25 ± 0.00° bunch ND° ND° ND° pomace 74.83 ± 0.25° 68.37 ± 0.02° 69.52 ± 0.02° bunch 76.78 ± 0.03° 68.88 ± 0.18° 69.91 ± 0.08° bunch 76.78 ± 0.03° 68.88 ± 0.18° 69.91 ± 0.08° bunch 10.21 ± 0.01° 17.39 ± 0.15° 17.34 ± 0.06° bunch 10.21 ± 0.01° 17.39 ± 0.15° 17.34 ± 0.06° stems 28.87 ± 0.78° 18.45 ± 0.73° 26.06 ± 0.71° bunch 10.21 ± 0.01° 17.39 ± 0.15° 17.34 ± 0.06° stems 28.87 ± 0.78° 18.45 ± 0.73° 26.06 ± 0.71° bunch 10.21 ± 0.01° 17.39 ± 0.15° 17.34 ± 0.06° stems 28.87 ± 0.78° 18.45 ± 0.73° 26.06 ± 0.71° bunch 10.21 ± 0.00° 0.11 ± 0.00° stems 28.87 ± 0.78° 18.45 ± 0.73° 26.06 ± 0.71° bunch 10.21 ± 0.00° 0.11 ± 0.00° bunch 0.03 ± 0.00° 0.01 ± 0.00° bunch 0.03 ± 0.00° 0.02 ± 0.00° bunch 0.03 ± 0.00° 0.01 ± 0.00° bunch 0.03 ± 0.00° 0.09 ± 0.03° bunch 0.03 ± 0.00° 0.09 ± 0.03° bunch 0.03 ± 0.00° 0.0		stems	15.80 ±0.45°	10.68 ±0.49b	13.14 ±0.68°
Stearic acid stems 3.52 ± 0.21° 4.03 ± 0.18° 3.86 ± 0.05° bunch 3.42 ± 0.02° 4.06 ± 0.03° 4.17 ± 0.01° Oleic acid stems 10.91 ± 0.07° 17.52 ± 0.02° 16.34 ± 0.02° bunch 10.21 ± 0.01° 17.09 ± 0.15° 15.04 ± 0.31° bunch 10.21 ± 0.01° 17.09 ± 0.15° 17.03 ± 0.06° bunch 36.86 ± 1.14° 57.19 ± 1.21° 45.47 ± 1.05° bunch 74.40 ± 0.03° 67.59 ± 0.02° 68.90 ± 0.04° a-linoleic acid stems 36.86 ± 1.14° 57.19 ± 1.21° 45.47 ± 1.05° bunch 74.40 ± 0.03° 67.66 ± 0.25° 68.90 ± 0.04° 0.77 ± 0.01° α-linoleic acid stems 15.17 ± 0.62° 5.74 ± 0.13° 9.03 ± 0.62° bunch 2.38 ± 0.02° 1.22 ± 0.00° 1.01 ± 0.05° bunch 2.38 ± 0.03° 1.22 ± 0.00° 1.01 ± 0.05° bunch ND° 0.24 ± 0.00° 0.25 ± 0.02° bunch ND° 0.24 ± 0.00° 0.25 ± 0.02° stems		bunch	8.85 ±0.02°	8.57 ±0.10 ^b	7.47 ±0.05°
Dunch 3.42 ±0.02* 4.06 ±0.03* 4.17 ±0.01*	Stearic acid	pomace	3.56 ±0.05°	3.95 ±0.00b	4.03 ±0.00°
Domace 10.91 ±0.07* 17.52 ±0.02* 16.34 ±0.02* 16.34 ±0.02* 16.12 ±0.12* 15.04 ±0.31** 17.09 ±0.15* 17.03 ±0.06* 17.09 ±0.15* 17.03 ±0.06* 17.09 ±0.15* 17.03 ±0.06* 17.09 ±0.15* 17.03 ±0.06* 17.09 ±0.15* 17.03 ±0.06* 17.09 ±0.15* 17.03 ±0.06* 17.09 ±0.15* 17.03 ±0.06* 17.09 ±0.15* 17.03 ±0.06* 17.09 ±0.15* 17.03 ±0.06* 17.09 ±0.15* 17.03 ±0.06* 17.09 ±0.15* 17.03 ±0.06* 17.09 ±0.15* 17.03 ±0.06* 17.09 ±0.15* 17.03 ±0.06* 17.09 ±0.15* 17.03 ±0.05* 17.09 ±0.15* 17.09 ±0.15* 17.09 ±0.15* 17.09 ±0.15* 17.09 ±0.15* 17.09 ±0.15* 17.09 ±0.15* 17.09 ±0.15* 17.09 ±0.15* 17.09 ±0.15* 17.09 ±0.15* 17.09 ±0.15* 17.09 ±0.15* 17.09 ±0.05* 17.09 ±0		stems	3.52 ±0.21°	4.03 ±0.18 ^b	3.86 ±0.05ab
Oleic acid stems 14.34 ± 0.92² 16.12 ± 0.12² 15.04 ± 0.31²² bunch 10.21 ± 0.01² 17.09 ± 0.15² 17.03 ± 0.66² pomace 73.08 ± 0.23² 67.59 ± 0.02² 68.75 ± 0.01² stems 36.86 ± 1.14² 57.19 ± 1.21² 45.47 ± 1.05² bunch 74.40 ± 0.03² 67.66 ± 0.25² 68.90 ± 0.04² φomace 1.75 ± 0.02² 0.78 ± 0.00² 0.77 ± 0.01² stems 15.17 ± 0.62² 5.74 ± 0.13² 9.03 ± 0.62² bunch 2.38 ± 0.03² 1.22 ± 0.06² 1.01 ± 0.05² pomace 0.28 ± 0.01² 0.24 ± 0.00² 0.24 ± 0.00² pomace 3.21 ± 0.07² 1.21 ± 0.03² 2.89 ± 0.09² bunch ND° 0.24 ± 0.00² 0.25 ± 0.00² Behenic acid stems 3.62 ± 0.11² 1.95 ± 0.08² 4.76 ± 0.15² bunch ND ND ND ND pomace 74.83 ± 0.25² 68.37 ± 0.02² 69.52 ± 0.02² PUFA stems 54.26 ± 1.81² 62.93 ± 1.15² 54.		bunch	3.42 ±0.02 ^a	4.06 ±0.03 ^b	4.17 ±0.01°
bunch 10.21 ±0.011 17.09 ±0.151 17.03 ±0.061 pomace 73.08 ±0.232 67.59 ±0.022 68.75 ±0.011 stems 36.86 ±1.144 57.19 ±1.211 45.47 ±1.052 bunch 74.40 ±0.033 67.66 ±0.253 68.90 ±0.044 pomace 1.75 ±0.022 0.78 ±0.009 0.77 ±0.011 α-linoleic acid stems 15.17 ±0.622 5.74 ±0.133 9.03 ±0.622 bunch 2.38 ±0.033 1.22 ±0.066 1.01 ±0.052 bunch 2.38 ±0.031 1.22 ±0.066 1.01 ±0.052 bunch ND 0.24 ±0.009 0.25 ±0.009 Arachidic acid stems 3.21 ±0.079 1.21 ±0.033 2.89 ±0.099 bunch ND 0.24 ±0.009 0.25 ±0.009 Behenic acid stems 3.62 ±0.119 1.95 ±0.088 4.76 ±0.155 bunch ND ND ND PUFA stems 54.26 ±1.819 62.93 ±1.159 54.51 ±0.467 bunch 76.78 ±0.033 68.88 ±0.189 69.91 ±0.089 MUFA stems 14.34 ±0.922 16.31 ±0.433 15.04 ±0.021 bunch 10.21 ±0.011 17.39 ±0.155 17.34 ±0.065 bunch 12.28 ±0.029 16.97 ±0.029 11.99 ±0.155 bunch 12.28 ±0.029 0.01 ±0.009 0.01 ±0.005 bunch 12.28 ±0.029 0.01 ±0.005 0.01 ±0.005 bunch 0.03 ±0.000 0.01 ±0.005 0.01 ±0.005 bunch 0.03 ±0.000 0.02 ±0.005 0.01 ±0.005 bunch 0.03 ±0.005 0.01 ±0.005 0.01 ±0.005 bunch 0.03 ±0.005 0.02 ±0.005 0.01 ±0.005 bunch 0.03 ±0.005 0.01 ±0.005 0.01 ±0.005 bunch 0.03 ±0.005 0.02 ±0.005 0.01 ±0.005 bunch		pomace	10.91 ±0.07°	17.52 ±0.02 ^b	16.34 ±0.02°
Domace 73.08 ±0.23 67.59 ±0.02 68.75 ±0.01 Stems 36.86 ±1.14 57.19 ±1.21 45.47 ±1.05 Dunch 74.40 ±0.03 67.66 ±0.25 68.90 ±0.04 Domace 1.75 ±0.02 0.78 ±0.00 0.77 ±0.01 Stems 15.17 ±0.62 5.74 ±0.13 9.03 ±0.62 Dunch 2.38 ±0.03 1.22 ±0.06 1.01 ±0.05 Dunch 2.38 ±0.03 1.22 ±0.06 1.01 ±0.05 Dunch ND 0.24 ±0.00 0.25 ±0.00 Dunch ND ND ND Dunch ND ND ND Domace 74.83 ±0.25 68.37 ±0.02 69.52 ±0.02 PUFA Stems 54.26 ±1.81 62.93 ±1.15 54.51 ±0.46 Dunch 10.21 ±0.01 17.39 ±0.15 17.34 ±0.06 Dunch 10.21 ±0.01 17.39 ±0.15 17.34 ±0.06 Stems 28.87 ±0.78 18.45 ±0.73 26.06 ±0.71 Dunch 12.28 ±0.02 12.98 ±0.29 11.99 ±0.15 Dunch 12.28 ±0.02 12.98 ±0.29 11.99 ±0.15 Dunch 12.28 ±0.02 12.98 ±0.29 11.99 ±0.15 Dunch 10.31 ±0.00 0.01 ±0.00 0.01 ±0.00 Ratio Σn3/n6 stems 44.72 ±0.47 86.60 ±0.13 89.59 ±0.75 Ratio Σn3/n6 stems 23.4 ±0.03 9.96 ±0.39 5.05 ±0.47 Domace 44.72 ±0.47 86.60 ±0.13 89.59 ±0.75 Ratio Σn3/n6 stems 23.4 ±0.03 9.96 ±0.39 5.05 ±0.47 Domace 44.72 ±0.47 86.60 ±0.13 89.59 ±0.75 Domace 44.72 ±0.47 86.6	Oleic acid	stems	14.34 ±0.92°	16.12 ±0.12 ^b	15.04 ±0.31ab
Linoleic acid stems 36.86 ± 1.14* 57.19 ± 1.21* 45.47 ± 1.05* bunch 74.40 ± 0.03* 67.66 ± 0.25* 68.90 ± 0.04* ρomace 1.75 ± 0.02* 0.78 ± 0.00* 0.77 ± 0.01* δunch 2.38 ± 0.03* 5.74 ± 0.13* 9.03 ± 0.62* bunch 2.38 ± 0.03* 1.22 ± 0.06* 1.01 ± 0.05* Arachidic acid stems 3.21 ± 0.07* 1.21 ± 0.03* 2.89 ± 0.09* bunch ND* 0.24 ± 0.00* 0.25 ± 0.00* bunch ND* 0.24 ± 0.00* 0.25 ± 0.00* Behenic acid stems 3.62 ± 0.11* 1.95 ± 0.08* 4.76 ± 0.15* bunch ND ND ND ND PUFA stems 3.62 ± 0.11* 1.95 ± 0.08* 4.76 ± 0.15* bunch ND ND ND ND PUFA stems 5.426 ± 1.81* 62.93 ± 1.15* 54.51 ± 0.46* bunch 76.78 ± 0.03* 68.88 ± 0.18* 69.91 ± 0.08* MUFA stems 14.34 ± 0.92* <td></td> <td>bunch</td> <td>10.21 ±0.01°</td> <td>17.09 ±0.15^b</td> <td>17.03 ±0.06°</td>		bunch	10.21 ±0.01°	17.09 ±0.15 ^b	17.03 ±0.06°
bunch 74.40 ± 0.03° 67.66 ± 0.25° 68.90 ± 0.04°		pomace	73.08 ±0.23 ^a	67.59 ±0.02 ^b	68.75 ±0.01°
$ \alpha - \text{linoleic acid} \qquad \begin{array}{c} \text{pomace} & 1.75 \pm 0.02^{\circ} & 0.78 \pm 0.00^{\circ} & 0.77 \pm 0.01^{\circ} \\ \text{stems} & 15.17 \pm 0.62^{\circ} & 5.74 \pm 0.13^{\circ} & 9.03 \pm 0.62^{\circ} \\ \text{bunch} & 2.38 \pm 0.03^{\circ} & 1.22 \pm 0.06^{\circ} & 1.01 \pm 0.05^{\circ} \\ \text{bunch} & 2.38 \pm 0.03^{\circ} & 1.22 \pm 0.06^{\circ} & 1.01 \pm 0.05^{\circ} \\ \text{pomace} & 0.28 \pm 0.01^{\circ} & 0.24 \pm 0.00^{\circ} & 0.24 \pm 0.00^{\circ} \\ \text{bunch} & ND^{\circ} & 0.24 \pm 0.00^{\circ} & 0.24 \pm 0.00^{\circ} \\ \text{bunch} & ND^{\circ} & 0.24 \pm 0.00^{\circ} & 0.25 \pm 0.00^{\circ} \\ \text{bunch} & ND^{\circ} & 0.24 \pm 0.00^{\circ} & 0.25 \pm 0.00^{\circ} \\ \text{bunch} & ND^{\circ} & 0.24 \pm 0.00^{\circ} & 0.11 \pm 0.00^{\circ} \\ \text{bunch} & ND^{\circ} & 0.24 \pm 0.00^{\circ} & 0.15 \pm 0.00^{\circ} \\ \text{bunch} & ND^{\circ} & 0.11 \pm 0.00^{\circ} & 0.11 \pm 0.00^{\circ} \\ \text{bunch} & ND^{\circ} & ND^{\circ} & ND^{\circ} & ND^{\circ} \\ \text{bunch} & ND^{\circ} & ND^{\circ} & ND^{\circ} & ND^{\circ} \\ \text{pomace} & 74.83 \pm 0.25^{\circ} & 68.37 \pm 0.02^{\circ} & 69.52 \pm 0.02^{\circ} \\ \text{bunch} & 76.78 \pm 0.03^{\circ} & 68.88 \pm 0.18^{\circ} & 69.91 \pm 0.08^{\circ} \\ \text{bunch} & 76.78 \pm 0.03^{\circ} & 68.88 \pm 0.18^{\circ} & 69.91 \pm 0.08^{\circ} \\ \text{bunch} & 10.21 \pm 0.01^{\circ} & 17.95 \pm 0.02^{\circ} & 16.72 \pm 0.02^{\circ} \\ \text{bunch} & 10.21 \pm 0.01^{\circ} & 17.39 \pm 0.15^{\circ} & 17.34 \pm 0.06^{\circ} \\ \text{pomace} & 12.93 \pm 0.18^{\circ} & 12.57 \pm 0.02^{\circ} & 12.30 \pm 0.01^{\circ} \\ \text{SFA} & \text{stems} & 28.87 \pm 0.78^{\circ} & 18.45 \pm 0.73^{\circ} & 26.06 \pm 0.71^{\circ} \\ \text{bunch} & 12.28 \pm 0.02^{\circ} & 12.98 \pm 0.29^{\circ} & 11.99 \pm 0.15^{\circ} \\ \text{bunch} & 0.03 \pm 0.00^{\circ} & 0.01 \pm 0.00^{\circ} & 0.01 \pm 0.00^{\circ} \\ \text{bunch} & 0.03 \pm 0.00^{\circ} & 0.01 \pm 0.00^{\circ} & 0.01 \pm 0.00^{\circ} \\ \text{bunch} & 0.03 \pm 0.00^{\circ} & 0.02 \pm 0.00^{\circ} & 0.01 \pm 0.00^{\circ} \\ \text{bunch} & 0.03 \pm 0.00^{\circ} & 0.02 \pm 0.00^{\circ} & 0.01 \pm 0.00^{\circ} \\ \text{bunch} & 0.03 \pm 0.00^{\circ} & 0.02 \pm 0.00^{\circ} & 0.01 \pm 0.00^{\circ} \\ \text{bunch} & 0.03 \pm 0.00^{\circ} & 0.02 \pm 0.00^{\circ} & 0.01 \pm 0.00^{\circ} \\ \text{bunch} & 0.03 \pm 0.00^{\circ} & 0.02 \pm 0.00^{\circ} & 0.01 \pm 0.00^{\circ} \\ \text{bunch} & 0.03 \pm 0.00^{\circ} & 0.02 \pm 0.00^{\circ} & 0.01 \pm 0.00^{\circ} \\ \text{bunch} & 0.03 \pm 0.00^{\circ} & 0.02 \pm 0.00^{\circ} & 0.01 \pm 0.00^{\circ} \\ \text{bunch} & 0.03 \pm 0.00^{\circ} & 0.02 \pm 0.00^{\circ} & 0.01 \pm 0.00^{\circ} \\ \text{bunch} & 0.03 \pm 0.00^{\circ} & 0.02 \pm 0.00^{\circ} & 0.01$	Linoleic acid	stems	36.86 ±1.14°	57.19 ±1.21 ^b	45.47 ±1.05°
α-linoleic acid stems 15.17 ±0.62° 5.74 ±0.13° 9.03 ±0.62° bunch 2.38 ±0.03° 1.22 ±0.06° 1.01 ±0.05° pomace 0.28 ±0.01° 0.24 ±0.00° 0.24 ±0.00° 0.24 ±0.00° 0.24 ±0.00° 0.25 ±0.00° pomace 0.19 ±0.01° 0.12 ±0.00° 0.11 ±0		bunch	74.40 ±0.03°	67.66 ±0.25 ^b	68.90 ±0.04°
bunch 2.38 ±0.03° 1.22 ±0.06° 1.01 ±0.05° pomace 0.28 ±0.01° 0.24 ±0.00° 0.24 ±0.00° stems 3.21 ±0.07° 1.21 ±0.03° 2.89 ±0.09° bunch ND° 0.24 ±0.00° 0.25 ±0.00° bunch ND° 0.11 ±0.00° 0.11 ±0.00° pomace 0.19 ±0.01° 0.11 ±0.00° 0.11 ±0.00° stems 3.62 ±0.11° 1.95 ±0.08° 4.76 ±0.15° bunch ND ND ND pomace 74.83 ±0.25° 68.37 ±0.02° 69.52 ±0.02° stems 54.26 ±1.81° 62.93 ±1.15° 54.51 ±0.46° bunch 76.78 ±0.03° 68.88 ±0.18° 69.91 ±0.08° pomace 11.32 ±0.08° 17.95 ±0.02° 16.72 ±0.02° stems 14.34 ±0.92° 16.31 ±0.43° 15.04 ±0.31° bunch 10.21 ±0.01° 17.39 ±0.15° 17.34 ±0.06° stems 28.87 ±0.78° 18.45 ±0.73° 26.06 ±0.71° bunch 12.28 ±0.02° 12.98 ±0.29° 11.99 ±0.15° Ratio Σn3/n6 stems 0.43 ±0.00° 0.01 ±0.00° 0.01 ±0.00° pomace 41.72 ±0.47° 86.60 ±0.13° 89.59 ±0.75° Ratio Σn3/n6 stems 2.34 ±0.03° 9.96 ±0.39° 5.05 ±0.47°		pomace	1.75 ±0.02°	0.78 ±0.00 ^b	0.77 ±0.01 ^b
Pomace 0.28 ± 0.01° 0.24 ± 0.00° 0.24 ± 0.00° stems 3.21 ± 0.07° 1.21 ± 0.03° 2.89 ± 0.09° bunch ND° 0.24 ± 0.00° 0.25 ± 0.00° pomace 0.19 ± 0.01° 0.11 ± 0.00° 0.11 ± 0.00° stems 3.62 ± 0.11° 1.95 ± 0.08° 4.76 ± 0.15° bunch ND ND ND PUFA Stems 54.26 ± 1.81° 62.93 ± 1.15° 54.51 ± 0.46° bunch 76.78 ± 0.03° 68.88 ± 0.18° 69.91 ± 0.08° bunch 76.78 ± 0.03° 17.95 ± 0.02° 16.72 ± 0.02° MUFA Stems 14.34 ± 0.92° 16.31 ± 0.43° 15.04 ± 0.31° bunch 10.21 ± 0.01° 17.39 ± 0.15° 17.34 ± 0.06° SFA Stems 28.87 ± 0.78° 18.45 ± 0.73° 26.06 ± 0.71° bunch 12.28 ± 0.02° 12.98 ± 0.29° 11.99 ± 0.15° bunch 0.02 ± 0.00° 0.01 ± 0.00° 0.01 ± 0.00° bunch 0.03 ± 0.00° 0.02 ± 0.00° 0.01 ± 0.00° bunch 0.03 ± 0.00° 0.02 ± 0.00° 0.01 ± 0.00° pomace 41.72 ± 0.47° 86.60 ± 0.13° 89.59 ± 0.75° Ratio Σn3/n6 Stems 2.34 ± 0.03° 9.96 ± 0.39° 5.05 ± 0.47°	α -linoleic acid	stems	15.17 ±0.62°	5.74 ±0.13 ^b	9.03 ±0.62°
Arachidic acid stems 3.21 ±0.07° 1.21 ±0.03° 2.89 ±0.09° bunch ND° 0.24 ±0.00° 0.25 ±0.00° pomace 0.19 ±0.01° 0.11 ±0.00° 0.11 ±0.00° stems 3.62 ±0.11° 1.95 ±0.08° 4.76 ±0.15° bunch ND ND ND PUFA stems 54.26 ±1.81° 62.93 ±1.15° 54.51 ±0.46° bunch 76.78 ±0.03° 68.88 ±0.18° 69.91 ±0.08° pomace 11.32 ±0.08° 17.95 ±0.02° 16.72 ±0.02° MUFA stems 14.34 ±0.92° 16.31 ±0.43° 15.04 ±0.31° bunch 10.21 ±0.01° 17.39 ±0.15° 17.34 ±0.06° SFA pomace 12.93 ±0.18° 12.57 ±0.02° 12.30 ±0.01° SFA stems 28.87 ±0.78° 18.45 ±0.73° 26.06 ±0.71° bunch 12.28 ±0.02° 12.98 ±0.29° 11.99 ±0.15° bunch 20.22 ±0.00° 0.01 ±0.00° 0.01 ±0.00° Ratio Σn3/n6 stems 0.43 ±0.00° 0.10 ±0.00°		bunch	2.38 ±0.03 ^a	1.22 ±0.06 ^b	1.01 ±0.05°
Dunch ND® 0.24 ±0.00% 0.25 ±0.00%		pomace	0.28 ±0.01°	0.24 ±0.00 ^b	0.24 ±0.00 ^b
Pomace 0.19 ± 0.01a 0.11 ± 0.00b 0.11 ± 0.00b Stems 3.62 ± 0.11a 1.95 ± 0.08b 4.76 ± 0.15c bunch ND ND ND PUFA Stems 54.26 ± 1.81a 62.93 ± 1.15b 54.51 ± 0.46c bunch 76.78 ± 0.03a 68.88 ± 0.18b 69.91 ± 0.08c MUFA Stems 11.32 ± 0.08a 17.95 ± 0.02c 16.72 ± 0.02c bunch 10.21 ± 0.01a 17.39 ± 0.15b 17.34 ± 0.06c SFA Stems 28.87 ± 0.78a 18.45 ± 0.73b 26.06 ± 0.71c bunch 12.28 ± 0.02a 12.98 ± 0.29b 11.99 ± 0.15c bunch 0.03 ± 0.00b 0.01 ± 0.00b consideration Domace 41.72 ± 0.47a 86.60 ± 0.13b 89.59 ± 0.75c Ratio Σn3/n6 Stems 23.44 ± 0.03a 9.96 ± 0.39b 5.05 ± 0.47c Ratio Σn3/n6 Stems 23.44 ± 0.03a 9.96 ± 0.39b 5.05 ± 0.47c Stems 23.44 ± 0.03a 9.96 ± 0.39b 5.05 ± 0.47	Arachidic acid	stems	3.21 ±0.07 ^a	1.21 ±0.03 ^b	2.89 ±0.09°
Behenic acid stems 3.62 ±0.11³ 1.95 ±0.08⁵ 4.76 ±0.15° bunch ND ND ND PUFA pomace 74.83 ±0.25° 68.37 ±0.02⁵ 69.52 ±0.02° stems 54.26 ±1.81° 62.93 ±1.15⁵ 54.51 ±0.46° bunch 76.78 ±0.03° 68.88 ±0.18⁵ 69.91 ±0.08° pomace 11.32 ±0.08° 17.95 ±0.02⁵ 16.72 ±0.02° MUFA stems 14.34 ±0.92° 16.31 ±0.43⁵ 15.04 ±0.31° bunch 10.21 ±0.01° 17.39 ±0.15⁵ 17.34 ±0.06° stems 12.93 ±0.18° 12.57 ±0.02⁵ 12.30 ±0.01° SFA stems 28.87 ±0.78° 18.45 ±0.73⁵ 26.06 ±0.71° bunch 12.28 ±0.02° 12.98 ±0.29⁵ 11.99 ±0.15° pomace 0.02 ±0.00° 0.01 ±0.00⁵ 0.01 ±0.00⁵ Ratio Σn3/n6 stems 0.43 ±0.00° 0.10 ±0.00⁵ 0.01 ±0.00⁵ pomace 41.72 ±0.47° 86.60 ±0.13⁵ 89.59 ±0.75° Ratio Σn3/n6 stems 2.34 ±0.03°		bunch	NDa	0.24 ±0.00 ^b	0.25 ±0.00°
Dunch ND ND ND	Behenic acid	pomace	0.19 ±0.01°	0.11 ±0.00 ^b	0.11 ±0.00 ^b
PUFA pomace 74.83 ±0.25³ 68.37 ±0.02⁵ 69.52 ±0.02⁵ stems 54.26 ±1.81³ 62.93 ±1.15⁵ 54.51 ±0.46⁵ bunch 76.78 ±0.03³ 68.88 ±0.18⁵ 69.91 ±0.08⁵ MUFA pomace 11.32 ±0.08³ 17.95 ±0.02⁵ 16.72 ±0.02⁵ MUFA stems 14.34 ±0.92² 16.31 ±0.43⁵ 15.04 ±0.31²⁵ bunch 10.21 ±0.01³ 17.39 ±0.15⁵ 17.34 ±0.06⁵ SFA stems 28.87 ±0.78³ 18.45 ±0.73⁵ 26.06 ±0.71⁵ bunch 12.28 ±0.02³ 12.98 ±0.29⁵ 11.99 ±0.15⁵ pomace 0.02 ±0.00³ 0.01 ±0.00⁵ 0.01 ±0.00⁵ Ratio Σn3/n6 stems 0.43 ±0.00³ 0.10 ±0.00⁵ 0.20 ±0.02⁵ Ratio Σn3/n6 tems 2.34 ±0.03³ 9.96 ±0.39⁵ 5.05 ±0.47⁵		stems	3.62 ±0.11 ^a	1.95 ±0.08 ^b	4.76 ±0.15°
PUFA stems $54.26 \pm 1.81^{\circ}$ $62.93 \pm 1.15^{\circ}$ $54.51 \pm 0.46^{\circ}$ bunch $76.78 \pm 0.03^{\circ}$ $68.88 \pm 0.18^{\circ}$ $69.91 \pm 0.08^{\circ}$ pomace $11.32 \pm 0.08^{\circ}$ $17.95 \pm 0.02^{\circ}$ $16.72 \pm 0.02^{\circ}$ $16.72 \pm 0.02^{\circ}$ stems $14.34 \pm 0.92^{\circ}$ $16.31 \pm 0.43^{\circ}$ $15.04 \pm 0.31^{\circ}$ bunch $10.21 \pm 0.01^{\circ}$ $17.39 \pm 0.15^{\circ}$ $17.34 \pm 0.06^{\circ}$ pomace $12.93 \pm 0.18^{\circ}$ $12.57 \pm 0.02^{\circ}$ $12.30 \pm 0.01^{\circ}$ stems $28.87 \pm 0.78^{\circ}$ $18.45 \pm 0.73^{\circ}$ $26.06 \pm 0.71^{\circ}$ bunch $12.28 \pm 0.02^{\circ}$ $12.98 \pm 0.29^{\circ}$ $11.99 \pm 0.15^{\circ}$ pomace $0.02 \pm 0.00^{\circ}$ $0.01 \pm 0.00^{\circ}$ $0.01 \pm 0.00^{\circ}$ stems $0.43 \pm 0.00^{\circ}$ $0.10 \pm 0.00^{\circ}$ $0.01 \pm 0.00^{\circ}$ bunch $0.03 \pm 0.00^{\circ}$ $0.02 \pm 0.00^{\circ}$ $0.01 \pm 0.00^{\circ}$ $0.01 \pm 0.00^{\circ}$ $0.01 \pm 0.00^{\circ}$ stems $0.03 \pm 0.00^{\circ}$ $0.02 \pm 0.00^{\circ}$ $0.01 \pm 0.00^$		bunch	ND	ND	ND
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PUFA	pomace	74.83 ±0.25°	68.37 ±0.02 ^b	69.52 ±0.02°
MUFA $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		stems	54.26 ±1.81°	62.93 ±1.15 ^b	54.51 ±0.46 ^a
MUFA		bunch	76.78 ±0.03°	68.88 ±0.18 ^b	69.91 ±0.08°
bunch 10.21 ± 0.01^a 17.39 ± 0.15^b 17.34 ± 0.06^b pomace 12.93 ± 0.18^a 12.57 ± 0.02^b 12.30 ± 0.01^a stems 28.87 ± 0.78^a 18.45 ± 0.73^b 26.06 ± 0.71^a bunch 12.28 ± 0.02^a 12.98 ± 0.29^b 11.99 ± 0.15^a pomace 0.02 ± 0.00^a 0.01 ± 0.00^b 0.01 ± 0.00^b stems 0.43 ± 0.00^a 0.10 ± 0.00^b 0.20 ± 0.02^a bunch 0.03 ± 0.00^a 0.02 ± 0.00^b 0.01 ± 0.00^b pomace 41.72 ± 0.47^a 86.60 ± 0.13^b 89.59 ± 0.75^a Ratio Σ n3/n6stems 2.34 ± 0.03^a 9.96 ± 0.39^b 5.05 ± 0.47^a	MUFA	pomace	11.32 ±0.08 ^a	17.95 ±0.02 ^b	16.72 ±0.02°
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		stems	14.34 ±0.92°	16.31 ±0.43 ^b	15.04 ±0.31ab
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		bunch	10.21 ±0.01°	17.39 ±0.15 ^b	17.34 ±0.06 ^b
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SFA	pomace	12.93 ±0.18 ^a	12.57 ±0.02 ^b	12.30 ±0.01°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		stems	28.87 ±0.78 ^a	18.45 ±0.73 ^b	26.06 ±0.71°
Ratio Σ n3/n6 stems $0.43 \pm 0.00^{\circ}$ $0.10 \pm 0.00^{\circ}$ $0.20 \pm 0.02^{\circ}$ bunch $0.03 \pm 0.00^{\circ}$ $0.02 \pm 0.00^{\circ}$ $0.01 \pm 0.00^{\circ}$ pomace $41.72 \pm 0.47^{\circ}$ $86.60 \pm 0.13^{\circ}$ $89.59 \pm 0.75^{\circ}$ Ratio Σ n3/n6 stems $2.34 \pm 0.03^{\circ}$ $9.96 \pm 0.39^{\circ}$ $5.05 \pm 0.47^{\circ}$		bunch	12.28 ±0.02°	12.98 ±0.29 ^b	11.99 ±0.15°
bunch 0.03 ± 0.00^a 0.02 ± 0.00^b 0.01 ± 0.00^b pomace 41.72 ± 0.47^a 86.60 ± 0.13^b 89.59 ± 0.75^a Ratio Σn3/n6stems 2.34 ± 0.03^a 9.96 ± 0.39^b 5.05 ± 0.47^a	Ratio Σ n3/n6	pomace	0.02 ±0.00 ^a	0.01 ±0.00 ^b	0.01 ±0.00 ^b
pomace 41.72 ± 0.47^a 86.60 ± 0.13^b 89.59 ± 0.75^c Ratio Σn3/n6 stems 2.34 ± 0.03^a 9.96 ± 0.39^b 5.05 ± 0.47^c		stems	0.43 ±0.00 ^a	0.10 ±0.00 ^b	0.20 ±0.02°
Ratio Σ n3/n6 stems 2.34 \pm 0.03° 9.96 \pm 0.39° 5.05 \pm 0.47°		bunch	0.03 ±0.00a	0.02 ±0.00 ^b	0.01 ±0.00 ^b
	Ratio Σ n3/n6	pomace	41.72 ±0.47°	86.60 ±0.13 ^b	89.59 ±0.75°
bunch 31.31 ± 0.37^{a} 55.34 ± 2.88^{b} 68.26 ± 3.48^{c}		stems	2.34 ±0.03 ^a	9.96 ±0.39 ^b	5.05 ±0.47°
		bunch	31.31 ±0.37°	55.34 ±2.88 ^b	68.26 ±3.48°

ND – value below detection limit, MUFA – monounsaturated fatty acids, PUFA – polyunsaturated fatty acids, SFA – saturated fatty acids. Values followed by different letters within a row are significant at the level 0.05

Table 2 Fatty acid profile of grape by-products from Austria (% fat⁻¹)

Mean ±Standard Deviation pomace 8.85 ±0.01³ stems 19.13 ±0.15 bunch 9.89 ±0.28 pomace 3.25 ±0.01³ stems 3.92 ±0.11 bunch 3.60 ±0.07³ pomace 9.80 ±0.04³ oleic acid stems 9.43 ±0.74³ bunch 10.96 ±0.10³ pomace 73.85 ±0.09³ Linoleic acid stems 38.92 ±1.07 bunch 72.98 ±0.39³ pomace 1.81 ±0.01³ α-linoleic acid stems 18.73 ±1.05° bunch 1.84 ±0.02° pomace 0.23 ±0.01° Arachidic acid stems 2.41 ±0.09° bunch ND	ot Blanc	Zweigelt
Palmitic acid stems 19.13 ±0.15 bunch 9.89 ±0.28 pomace 3.25 ±0.01³ stems 3.92 ±0.11 bunch 3.60 ±0.07³ pomace 9.80 ±0.04³ stems 9.43 ±0.74³ bunch 10.96 ±0.10³ pomace 73.85 ±0.09³ stems 38.92 ±1.07 bunch 72.98 ±0.39³ pomace 1.81 ±0.01³ stems 18.73 ±1.05³ bunch 1.84 ±0.02² pomace 0.23 ±0.01² stems 2.41 ±0.09³ bunch ND	'	
bunch 9.89 ± 0.28 pomace 3.25 ± 0.01^a stems 3.92 ± 0.11 bunch 3.60 ± 0.07^a pomace 9.80 ± 0.04^a stems 9.43 ± 0.74^a bunch 10.96 ± 0.10^a pomace 73.85 ± 0.09^a stems 38.92 ± 1.07 bunch 72.98 ± 0.39^a pomace 1.81 ± 0.01^a stems 18.73 ± 1.05^a bunch 1.84 ± 0.02^a pomace 0.23 ± 0.01^a stems 2.41 ± 0.09^a bunch ND	7.96 ±0.03 ^b	8.70 ±0.03°
Stearic acid pomace 3.25 ± 0.01^a stems 3.92 ± 0.11 bunch 3.60 ± 0.07^a pomace 9.80 ± 0.04^a Stems 9.43 ± 0.74^a bunch 10.96 ± 0.10^a pomace 73.85 ± 0.09^a stems 38.92 ± 1.07 bunch 72.98 ± 0.39^a pomace 1.81 ± 0.01^a stems 18.73 ± 1.05^a bunch 1.84 ± 0.02^a pomace 0.23 ± 0.01^a Arachidic acid stems 2.41 ± 0.09^a bunch ND	16.79 ±0.31	19.62 ±5.85
Stearic acid stems 3.92 ± 0.11 bunch 3.60 ± 0.07^a pomace 9.80 ± 0.04^a pomace 9.43 ± 0.74^a bunch 10.96 ± 0.10^a pomace 73.85 ± 0.09^a stems 38.92 ± 1.07 bunch 72.98 ± 0.39^a pomace 1.81 ± 0.01^a stems 18.73 ± 1.05^a bunch 1.84 ± 0.02^a pomace 0.23 ± 0.01^a Arachidic acid stems 2.41 ± 0.09^a bunch ND	7.69 ±0.03	9.86 ±1.56
bunch 3.60 ± 0.07^a pomace 9.80 ± 0.04^a stems 9.43 ± 0.74^a bunch 10.96 ± 0.10^a pomace 73.85 ± 0.09^a stems 38.92 ± 1.07 bunch 72.98 ± 0.39^a pomace 1.81 ± 0.01^a stems 18.73 ± 1.05^a bunch 1.84 ± 0.02^a pomace 0.23 ± 0.01^a Arachidic acid stems 2.41 ± 0.09^a bunch ND	3.44 ±0.01 ^b	3.77 ±0.01°
Oleic acid pomace 9.80 ± 0.04^a stems 9.43 ± 0.74^a bunch 10.96 ± 0.10^a pomace 73.85 ± 0.09^a stems 38.92 ± 1.07 bunch 72.98 ± 0.39^a pomace 1.81 ± 0.01^a stems 18.73 ± 1.05^a bunch 1.84 ± 0.02^a pomace 0.23 ± 0.01^a stems 2.41 ± 0.09^a bunch ND	4.35 ±0.11	5.75 ±2.05
Oleic acid stems 9.43 ± 0.74^a bunch 10.96 ± 0.10^a pomace 73.85 ± 0.09^a stems 38.92 ± 1.07 bunch 72.98 ± 0.39^a pomace 1.81 ± 0.01^a stems 18.73 ± 1.05^a bunch 1.84 ± 0.02^a pomace 0.23 ± 0.01^a Arachidic acid stems 2.41 ± 0.09^a bunch ND	3.36 ±0.02 ^a	4.42 ±0.51 ^b
bunch 10.96 ± 0.10^a pomace 73.85 ± 0.09^a stems 38.92 ± 1.07 bunch 72.98 ± 0.39^a pomace 1.81 ± 0.01^a stems 18.73 ± 1.05^a bunch 1.84 ± 0.02^a pomace 0.23 ± 0.01^a Arachidic acid stems 2.41 ± 0.09^a bunch ND	15.98 ±0.03 ^b	15.86 ±0.01°
Linoleic acid pomace 73.85 ± 0.09^a stems 38.92 ± 1.07 bunch 72.98 ± 0.39^a pomace 1.81 ± 0.01^a stems 18.73 ± 1.05^a bunch 1.84 ± 0.02^a pomace 0.23 ± 0.01^a Arachidic acid stems 2.41 ± 0.09^a bunch ND	12.04 ±0.23 ^{ab}	15.26 ±2.69 ^b
Linoleic acid stems 38.92 ± 1.07 bunch 72.98 ± 0.39^a pomace 1.81 ± 0.01^a stems 18.73 ± 1.05^a bunch 1.84 ± 0.02^a pomace 0.23 ± 0.01^a Arachidic acid stems 2.41 ± 0.09^a bunch ND	16.39 ±0.05 ^b	16.86 ±0.51 ^b
	68.89 ±0.10 ^b	66.61 ±0.04°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36.06 ±0.29	38.40 ±6.70
$α$ -linoleic acid $\frac{18.73 \pm 1.05^{a}}{bunch}$ $\frac{18.73 \pm 1.05^{a}}{1.84 \pm 0.02^{a}}$ $\frac{pomace}{stems}$ $\frac{0.23 \pm 0.01^{a}}{bunch}$ $\frac{2.41 \pm 0.09^{a}}{bunch}$	70.63 ±0.11ª	66.82 ±2.41 ^b
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.15 ±0.03 ^b	1.21 ±0.02°
Arachidic acid pomace 0.23 ±0.01a stems 2.41 ±0.09a bunch ND	15.65 ±0.21°	9.17 ±2.47 ^b
Arachidic acid stems 2.41 ±0.09° bunch ND	1.09 ±0.07 ^b	1.13 ±0.08 ^b
bunch ND	0.34 ±0.01 ^b	0.27 ±0.01°
	3.52 ±0.07 ^b	2.30 ±0.24 ^a
	ND	ND
pomace 0.17 ±0.00 ^a	0.24 ±0.00 ^b	0.17 ±0.00°
Behenic acid stems 3.81 ± 0.20^{a}	5.73 ±0.16 ^b	3.71 ±0.48 ^a
bunch ND	ND	ND
pomace 75.66 ±0.10 ^a	70.04 ±0.10 ^b	67.82 ±0.04°
PUFA stems 57.66 ±0.39	51.71 ±0.42	47.57 ±9.10
bunch 74.83 ±0.39 ^a	71.72 ±0.09ª	67.95 ±2.48 ^b
pomace 10.09 ±0.05°	16.50 ±0.03 ^b	16.60 ±0.01°
MUFA stems 9.43 ±0.74a	12.04 ±0.23ª	16.61 ±2.48 ^b
bunch 10.96 ±0.10 ^a	16.39 ±0.05 ^b	17.00 ±0.39 ^c
pomace 12.89 ±0.01 ^a	12.38 ±0.04 ^b	13.37 ±0.04°
SFA stems 29.27 ±0.34	30.39 ±0.29	32.88 ±7.35
bunch 13.49 ±0.31 ^{ab}	11.06 ±0.04°	14.28 ±2.07 ^b
pomace 0.02 ±0.00 ^a	0.02 ±0.00b	0.02 ±0.00°
Ratio Σ n3/n6 stems 0.48 \pm 0.04 ^a	0.43 ±0.01ª	0.24 ±0.03 ^b
bunch 0.03 ±0.00°	0.02 ±0.00 ^b	0.02 ±0.00 ^b
pomace 40.778 ±0.27 ^a	60.16 ±1.34 ^b	55.25 ±0.77°
Ratio Σ n3/n6 stems 2.08 \pm 0.18 ^a	2.30 ±0.03°	4.28 ±0.56 ^b
bunch 39.56 ±0.59 ^a	65.07 ±4.09 ^b	59.20 ±2.07 ^b

ND – value below detection limit, MUFA – monounsaturated fatty acids, PUFA – polyunsaturated fatty acids, SFA – saturated fatty acids. Values followed by different letters within a row are significant at the level 0.05

 Table 3
 Comparison of fatty acid profile of grape by-products from Slovakia and Austria

			Ι	I	
		Slovakia	Austria	Significance	
		Mean ±Standard deviati			
Palmitic acid	pomace	8.15 ±0.41	8.50 ±0.41	0.000	
	stems	13.21 ±2.27	18.51 ±3.21	0.578	
	bunch	8.30 ±0.64	9.15 ±1.35	0.041	
	pomace	3.84 ±0.22	3.49 ±0.23	0.000	
Stearic acid	stems	3.80 ±0.26	4.67 ±1.32	0.223	
	bunch	3.88 ±0.35	3.79 ±0.54	0.012	
	pomace	14.92 ±3.06	13.88 ±3.06	0.000	
Oleic acid	stems	15.17 ±0.92	12.24 ±2.89	0.013	
	bunch	14.77 ±3.43	14.74 ±2.85	0.000	
	pomace	69.81 ±2.51	69.79 ±3.21	0.000	
Linoleic acid	stems	46.51 ±8.89	37.80 ±3.64	0.656	
	bunch	70.32 ±3.11	70.14 ±2.96	0.005	
	pomace	1.10 ±0.49	1.39 ±0.32	0.000	
α -linoleic acid	stems	9.98 ±4.17	14.52 ±4.44	0.001	
	bunch	1.54 ±0.64	1.35 ±0.37	0.000	
	pomace	0.25 ±0.02	0.28 ±0.05	0.000	
Arachidic acid	stems	2.44 ±0.93	2.74 ±0.60	0.000	
	bunch	0.16 ±0.12	ND	ND	
Behenic acid	pomace	0.14 ±0.04	0.20 ±0.03	0.000	
	stems	3.44 ±1.23	4.41 ±1.02	0.000	
	bunch	ND	ND	ND	
PUFA	pomace	70.91 ±2.99	71.17 ±3.50	0.000	
	stems	57.23 ±4.41	52.31 ±6.33	0.140	
	bunch	71.86 ±3.72	71.50 ±3.24	0.003	
MUFA	pomace	15.33 ±3.06	14.40 ±3.23	0.000	
	stems	15.23 ±1.01	12.69 ±3.40	0.003	
	bunch	14.98 ±3.58	14.78 ±2.89	0.000	
SFA	pomace	12.60 ±0.29	12.88 ±0.43	0.000	
	stems	24.46 ±4.71	30.85 ±4.02	0.594	
	bunch	12.42 ±0.47	12.94 ±1.79	0.039	
Ratio Σ n3/n6	pomace	0.02 ±0.01	0.02 ±0.00	0.000	
	stems	0.24 ±0.15	0.38 ±0.12	0.000	
	bunch	0.02 ±0.01	0.19 ±0.00	0.000	
Ratio Σ n3/n6	pomace	72.64 ±23.23	52.06 ±8.76	0.000	
	stems	5.78 ±3.36	2.89 ±1.09	0.000	
	bunch	51.64 ±16.40	54.61 ±11.80	0.000	
				I	

ND – value below detection limit, MUFA – monounsaturated fatty acids, PUFA – polyunsaturated fatty acids, SFA – saturated fatty acids. The level of significance was set at *P* < 0.05

4 Conclusions

The results of this experimnet indicate a significant impact of the grape variety and location on the FA profile of grape by-products. But despite these differences some similarities can be found. Grape pomaces and grape bunches were rich in PUFA, especially linoleic acid, and low in SFA. Grape stems were characterized by a high SFA content, but on the other hand, these samples had the highest *H*-linolec acid concentration. Overall it can ce concluded that the by-products of wine industry, primarily grape pomace, could find application in animal nutrition as feed additives with high PUFA content. However, further research in the future in needed.

Acknowledgments

The study was supported by the Slovak Research and Development Agency under the contract no. APVV-16-0170 (By-products from grape processing as a bioactive substances source in animal nutrition).

References

BEKHIT, A. et al. (2015). Technological Aspects of By-Product Utilization. *Valorization of Wine Making By-Products*, 117–198. DOI: https://doi.org/10.1201/b19423-5

BENNEMANN, G. D. et al. (2016). Mineral analysis, anthocyanins and phenolic compounds in wine residues flour. In *BIO Web of Conferences*, 7, p. 04007.

BOTELLA, C. et al. (2005). Hydrolytic enzyme production by *Aspergillus awamori* on grape pomace. *Biochemical Engineering Journal*, 26(2–3), 100–106. DOI: https://doi.org/10.1016/j.bej.2005.04.020

CHAMORRO, S. et al. (2015). Influence of dietary enzyme addition on polyphenol utilization and meat lipid oxidation of chicks fed grape pomace. *Food Research International*, 73, 197–203. DOI: https://doi.org/10.1016/j.foodres.2014.11.054

CHEDEA, V. et al. (2018). Intestinal Absorption and Antioxidant Activity of Grape Pomace Polyphenols. *Nutrients*, 10(5), 588. DOI: https://doi.org/10.3390/nu10050588

DOMÍNGUEZ, J., MARTÍNEZ-CORDEIRO, H. and LORES, M. (2016). Earthworms and Grape Marc: Simultaneous Production of a High-Quality Biofertilizer and Bioactive-Rich Seeds. *Grape and Wine Biotechnology*. DOI: https://doi.org/10.5772/64751

FERNANDES, L. et al. (2013). Seed oils of ten traditional Portuguese grape varieties with interesting chemical and antioxidant properties. *Food Research International*, 50(1), 161–166. DOI: https://doi.org/10.1016/j.foodres.2012.09.039

FONTANA, A. R., ANTONIOLLI, A. and BOTTINI, R. (2013). Grape Pomace as a Sustainable Source of Bioactive Compounds: Extraction, Characterization, and Biotechnological Applications of Phenolics. *Journal of Agricultural and Food Chemistry*, 61(38), 8987–9003. DOI: https://doi.org/10.1021/if402586f

GARCÍA-LOMILLO, J. and GONZÁLEZ-SANJOSÉ, M. L. (2017). Applications of Wine Pomace in the Food Industry: Approaches and Functions. Comprehensive Reviews in Food Science and Food Safety, 16(1), 3–22. DOI: https://doi.org/10.1111/1541-4337.12238

GUERRA-RIVAS, C. et al. (2016). Effects of grape pomace in growing lamb diets compared with vitamin E and grape seed extract on meat shelf life. *Meat science*, 116, 221–229.

GÜLCÜ, M. et al. (2019). The investigation of bioactive compounds of wine, grape juice and boiled grape juice wastes. *Journal of Food Processing and Preservation*, 43(1), e13850. DOI: https://doi.org/10.1111/jfpp.13850

GÜL, H. et al. (2013). Antioxidant activity, total phenolics and some chemical properties of Öküzgözü and Narince grape pomace and grape seed flour. *Journal of Food, Agriculture & Environment*, 11(2), 28–34.

HUSSEIN, S. and ABDRABBA, S. (2015). Physico-chemical characteristics, fatty acid, composition of grape seed oil and phenolic compounds of whole seeds, seeds and leaves of red grape in Libya. *International Journal of Applied Science and Mathematics*, 2(5), 2394–2894.

KAFANTARIS, I. et al. (2018). Effects of Dietary Grape Pomace Supplementation on Performance, Carcass Traits and Meat Quality of Lambs. *In Vivo*, 32(4), 807–812. DOI: https://doi.org/10.21873/invivo.11311

KERASIOTI, E. et al. (2017). Tissue specific effects of feeds supplemented with grape pomace or olive oil mill wastewater on detoxification enzymes in sheep. *Toxicology Reports*, 4, 364–372. DOI: https://doi.org/10.1016/j.toxrep.2017.06.007

MAKRIS, D. P. et al. (2007). Characterisation of certain major polyphenolic antioxidants in grape (*Vitis vinifera* cv. Roditis) stems by liquid chromatography-mass spectrometry. *European Food Research and Technology*, 226(5), 1075–1079. DOI: https://doi.org/10.1007/s00217-007-0633-9

MIRONEASA, S., Codină, G. G. and MIRONEASA, C. (2016). the effects of wheat flour substitution with grape seed flour on the rheological parameters of the dough assessed by mixolab. *Journal of Texture Studies*, 43(1), 40–48. DOI: https://doi.org/10.1111/j.1745-4603.2011.00315.x

ELEONORA, N. et al. (2014). Grape pomace in sheep and dairy cows feeding. *Journal of Horticulture, Forestry and Biotechnology*, 18(2), 146–150.

OVCHAROVA, T., ZLATANOV, M. and DIMITROVA, R. (2016). Chemical composition of seeds of four Bulgarian grape varieties. *Ciência e Técnica Vitivinícola*, 31(1), 31–40. DOI: https://doi.org/10.1051/ctv/20163101031

RIBEIRO, L. F. et al. (2015). Profile of bioactive compounds from grape pomace (*Vitis vinifera* and *Vitis labrusca*) by spectrophotometric, chromatographic and spectral analyses. *Journal of Chromatography B,* 1007, 72–80. DOI: https://doi.org/10.1016/j.jchromb.2015.11.005

RONDEAU, P. et al. (2013). Compositions and chemical variability of grape pomaces from French vineyard. *Industrial Crops and Products*, 43, 251–254. DOI: https://doi.org/10.1016/j.indcrop.2012.06.053

RUSSO, V. M. et al. (2017). *In vitro* evaluation of the methane mitigation potential of a range of grape marc products. *Animal Production Science*, 57(7), 1437. DOI: https://doi.org/10.1071/an16495

SOUQUET, J.-M. et al. (2000). Phenolic Composition of Grape Stems. *Journal of Agricultural and Food Chemistry*, 48(4), 1076–1080. DOI: https://doi.org/10.1021/jf991171u

TANGOLAR, S. G. et al. (2009). Evaluation of fatty acid profiles and mineral content of grape seed oil of some grape genotypes. *International Journal of Food Sciences and Nutrition*, 60(1), 32–39. DOI: https://doi.org/10.1080/09637480701581551

TEIXEIRA, A. et al. (2014). Natural bioactive compounds from winery by-products as health promoters: a review. *International journal of molecular sciences*, 15(9), 15638–15678.

TSIPLAKOU, E. and ZERVAS, G. (2008). The effect of dietary inclusion of olive tree leaves and grape marc on the content of conjugated linoleic acid and vaccenic acid in the milk of dairy sheep and goats. *Journal -of Dairy Research*, 75(3), 270–278. DOI: https://doi.org/10.1017/s0022029908003270

VIVEROS, A. et al. (2011). Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. *Poultry Science*, 90(3), 566–578. DOI: https://doi.org/10.3382/ps.2010-00889

YI, C. et al. (2009). Fatty acid composition and phenolic antioxidants of winemaking pomace powder. *Food Chemistry*, 114(2), 570–576. DOI: https://doi.org/10.1016/j.foodchem.2008.09.103

YOUSEFI, M. O. R. V. A. R. I. D., NATEGHI, L. E. I. L. A. and GHOLAMIAN, M. (2013). Physico-chemical properties of two types of shahrodi grape seed oil (Lal and Khalili). *European Journal of Experimental Biology*, 3(5), 115–118.

YU, J. and AHMEDNA, M. (2012). Functional components of grape pomace: their composition, biological properties and potential applications. *International Journal of Food Science & Technology*, 48(2), 221–237. DOI: https://doi.org/10.1111/j.1365-2621.2012.03197.x