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1	 Introduction
Compaction is regarded as one of the main causes of 
soil degradation and it is addressed in the proposed 
European Soil Framework Directive (Brussel´s European 
Commission, 2006). Traffic compaction has adverse 
effects on the physical, chemical and biological properties 
of soils; thus, affecting important soil processes and 
functions, and crop productivity (Antille et al., 2019).

Soil compaction results from vehicular traffic, which 
causes an increase in soil strength (Chancellor and 
Schmidt, 1962). This restricts root development and 
penetration into the soil, which therefore reduces water 
and nutrient uptake by the plant, and translates into 
reduced crop yield (Unger and Kaspar, 1994; Lipiec 
and Hatano, 2003). Several studies (Canarache et al., 
1974; Schäfer-Landefeld et al. 2004; Vero et al., 2014) 
have shown that traffic-induced compaction can cause 
reductions in soil porosity of up to 70% or greater, 

which occurs primarily in the larger drainage pores, with 
significant disruption in pores connectivity (Berisso et al., 
2012). Annual application of axle load reduces seedling 
emergence, grain yield, soil water storage and crop water 
used efficiency (Radford et al., 2001).

In Europe, the extent of soil compaction is estimated 
to be approximately 33 million ha (Van den Akker and 
Canarache, 2001). Recent research has showed that 
compaction is the most widespread kind of soil physical 
soil degradation in central and eastern Europe. About 
25  million ha were deemed to be lightly compacted 
while a further 36 million ha were more severely affected 
(ESDAC, 2020).

Estimates for Slovakia suggest that approximately 
600,000 ha of arable land are affected by compaction, 
which results in yields of winter cereal crops being 
reduced by up to 10% to 20% on average compared with 
achievable yields in central Europe in most years (Fulajtar, 
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2000). An assessment of the state of soil compaction in 
Slovakia (Houšková, 2002) indicated that the majority 
of medium- and medium to heavy-textured soils, which 
are primarily used for arable cropping, exhibited dry 
bulk densities that were at or above the threshold values 
suggested by authors (Lhotský et al., 1991) for those 
soils. Further studies (Bielek, 2003; Bielek et al., 2005) 
indicated that up to 25% of the arable land in Slovakia 
has a productivity index reduced by 10% or greater as a 
result of soil compaction, which is exacerbated by their 
natural susceptibility to such compaction (Houšková 
and Montanarella, 2008). Kobza (2018) reported that 
nowadays there is over 200 000 hectares of compacted 
soils and 500 000 hectares are under the risk of 
compaction. 

Physiological processes of plants affected by soil 
compaction are discussed in many studies (Kobaissi et 
al., 2013; Shukor et al., 2015; Colombi and Keller, 2019; 
Singh et al., 2020). As a main problem is address the 
low root system expansion rates due to compacted soil. 
Consequently the low levels of oxygen in soil reduced 
supply of water and nutrients leads to significant decrease 
of leaf development and finally decrease of biomass yield 
(Colombi and Keller, 2019; Correa et al., 2019). Mechanical 
penetration resistance (impedance) is one of the major 
limitations to root growth in compacted soils even under 
moderately wet conditions (Bengough et al., 2011). The 
increased soil strength results in decreased plant vigor 
and root numbers. The conditions for root growth in such 
soils are limited and aggravated by drought stress (Rivera 
et al., 2019).The effect of soil compaction on phenotype 
variability of root system is influenced by crop species 
including major mono- and dicotyledonous crops, 
genotype and stage of growth (Batey, 2009; Colombi and 
Walter, 2017).

MicroRNAs are endogenous, single-stranded, non-
coding molecules of about 21-25 nt in size, which 
have an important regulatory role in plant growth and 
development (Axtell et al., 2011; Kruszka et al., 2012; 
Barvkar et al., 2013), biological and metabolic processes 
(Bartel, 2004; Cuperus et al., 2011; Reis et al., 2015) and 
regulates various developmental and physiological 
processes (Jones-Rhoades et al., 2006; Bej and Basak, 
2014). DNA-based markers corresponding to miRNA 
sequences have been developed as a new type of 
functional markers (Fu et al., 2013). They represent 
a highly efficient, stable, reproducible and protocol-
portable method of genotyping in the area of marker 
techniques (Yadav et al., 2014). A system of genotyping 
based on miRNAs markers was applied to Brassica sp. 
(Fu et al., 2013), Setaria sp. (Yadav et al., 2014) as well 
as to rice (Mondal and Ganie 2014; Ganie and Mondal, 
2015). MicroRNA markers combine the advantages of 

relatively high polymorphism, reproducibility, inter-
species transferability, and ease of use with predicted 
functionality. Polymorphism amplified by the application 
of miRNAs markers indicates changes in miRNA loci 
sequences, which may result in changes in target gene 
regulation.

The aim of research into the impact of soil compaction 
was to identify the barley (Hordeum vulgare L.) genome 
response by stress-responsive miRNA-based markers. 
A prerequisite for the research was that the plants are 
exposed to a lack of soil moisture and nutrients due to 
soil compaction. 

2	 Materials and methods 

2.1	 Experimental site
Plant material was collected at an experimental site, 
where a long-term field scale experiment on Controlled 
traffic farming was established in growing season 
2009/2010. The 16 ha experimental field is located at 
University farm in Koliňany on silty loam Haplic Luvisol. 
The different intensity of soil compaction is introduced 
through the controlled traffic of machinery at the field. 
The layout of the experiment and all the details are 
described in works of (Galambošová et al., 2017; Macák et 
al., 2018). Data from soil proximal sensors were collected 
at two areas with different soil compaction conditions 
(Figure 1): CTF-004B – Crop bed – non compacted soil 
(no field traffic since 2009/2010) and CTF-004C – Traffic 
line – permanent traffic line of the CTF system, all field 
traffic at this line since 2009/2010. The differences in soil 
structure conditions have been regularly measured. To 
show the difference, values of penetrometric resistance 
of the two variants is provided in Figure 1. 

2.2	 Genomic analysis
For molecular analyzes, barley plant material from the 
following experimental variants was used: samples 
designated CTF-004B (control variant) and CTF-004C 
(stress variant). The total genomic DNA was extracted 
from roots, stems and leaves of the bulk sample of 
three plants and homogenized in liquid nitrogen in 
accordance with the protocol by (Khanuja et al., 1999) 
The extracted DNA was quantified by the Implen 
NanoPhotometer®, and diluted to 70 ng·μl-1. In order 
to explore the pedocompaction effect on the barley 
genome, four types of microRNAs markers have been 
used. We tested the barley genome response through 
drought-sensitive (miR156 and miR408) and nutrition-
deficiency-sensitive biomarkers (miR399 and miR827) of 
microRNA (Kantar et al., 2010; Kehr, 2013; Hajyzadeh et 
al., 2015;). Genomic analyses were performed based on 
following studies (Cuperus et al., 2011; Bej and Basak, 
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2014), with modifications (Hlavačková and Ražná, 2015; 
Ražná and Hlavačková, 2017).

3	 Results and discussion
Hvu-miR156 and hvu-miR408 are identified as 
dehydration stress-responsive miRNAs mediating barley 
genome response to drought stress factor (Kantar et al., 
2010). Due to dehydration stress, these molecules are 
activated. Figure 2 illustrates tissue-specific genome 
reaction to dehydration stress detected by both markers 
hvu-miR156 and hvu-miR408. In the case of a hvu-
miR156 marker was stress-induced activity detected 
mainly in leaf and stem tissues (Figure 2a). However 
in marker hvu-miR408 significant induction could be 
observed in stems and root tissues of the tested samples 
(Figure 2b). Induction of miR156 activity was detected in 
barley leaves and stems, whereas there were minimum 
changes for miR156 in roots. This data is consistent with 
the findings by (Kantar et al., 2010); however, in rice was 
found that miR156 were down regulated upon drought 
stress (Zhou et al., 2010). It seems that the drought 
biomarkers response is not only tissue-specific but also 
species-specific (Kruszka et al., 2014) moreover in the 
case of miR408 marker its response might be cultivar-
specific (Melnikova et al., 2016).

Many plant miRNAs contribute to plant genome response 
to abiotic stress factors (Bej and Basak 2014; Zhang, 
2015; Rajwanshi et al., 2014; Sun et al., 2019). MicroRNA-
based markers are considered functional molecular 
markers because they are designed from sequences 
corresponding to pre-miRNA or mature miRNAs and 
therefore they are able to predict phenotypes controlled 
by miRNA. Observed polymorphism indicates sequence 

Figure 1	 Intensity of soil compaction in experimental 
zones represented by vertical penetration 
resistance (crop bed and trafficked lane)
Note: average of gravimetric soil moisture content in 
depth horizons 0–20 cm, 20–40 cm and 40–80 cm were 
20.6%, 22.7%, 23.7%

Figure 2	 Profile of DNA fragments amplified by marker hvu-miR156 (a) and hvu-miR408 (b) in barley control (B) and stressed 
(C) samples
L – leaves, S – stems, R – roots
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variability or changes in miRNA loci as a consequence of 
modified regulation of targeted genes (Fu et al., 2013; 
Yadav et al., 2014).

Digital profiles of the electrophoreograms obtained 
by the marker hvu-miR408 showed, in comparison to 
control samples, significant induction of the biomarker to 
dehydration stress as a consequence of pedocompaction 
effect (Figure 3). Our findings are supported by the 
several studies where the activity of miR408 was induced 
as a result of water deficiency (Kantar et al., 2010; Zhou et 
al., 2010; Hajyzadeh et al., 2014). The role of miR408 in the 
regulatory mechanisms associated with plant genome 
response to dehydration stress was proved by Bej and 
Basak (2014) and Ma et al. (2015).

Stress-induced activity of hvu-miR408 marker was 
detected mainly in stem and root tissues, which 
corresponds to the results of Trindade et al. (2010), where 
strong up-regulation of miR408 in roots of Medicago 
truncatula and down-regulation of its target gene was 
observed. A minor decrease in activity of miR408 marker 
in leaves under drought stress was observed (Figure 1), 
which is in line with the results of Ma et al. (2015), where 
a  minor decrease of miR408 level under drought stress 
was observed in Arabidopsis leaves. According Liu et al. 
(2008) the miR408 was included into category of miRNAs 

whose target genes respond to several stresses. However, 
the research of Hajyzadeh et al. (2014) proved that miR408 
is involved in drought stress regulation and increased 
level of miR408 is important to drought tolerance. There 
is evidence that many of the miRNAs (including miR156 
and miR408) are involved in the stress tolerance and 
developmental processes which make it possible to 
assume that these miRNAs might be co-regulated by 
both environmental factors and developmental stimulus 
(Liu et al., 2008; Zhou et al., 2010; Ma et al., 2015; Zhang, 
2015). 

Another important factor to be considered in terms 
of miRNAs expression pattern is the specification of 
miRNAs molecules belonging to certain miRNA family. 
Observations showed that miRNAs encoded by different 
genes representing the same MIR gene family might 
differ in their expression regulation pattern (Kruszka et 
al., 2014). As it can be seen in the study of (Zhou et al., 
2010) where significant down regulation of miR408e 
of  sugar cane was observed in response to drought 
stress.  The differential response of miR408 in reported 
studies could also be due to the different developmental 
stages of testes plant, stress intensity, growth conditions 
and methods employed to monitor miRNAs activity 
(Zhang, 2015).

Figure 3	 Digital profiles of the electrophoreograms obtained by the hvu-miR408 marker. Control (B) and stressed (C) samples
L – leaves, S – stems, R – roots
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Two other types of nutrition-sensitive markers, hvu-
miR399 and hvu-miR827 belong to the most conserved 
miRNA families in barley genome (Wu et al., 2014), which 
points to their importance in plants genome. They play 
an important role in regulatory mechanisms related to 
nutrient homeostasis (Hsieh et al., 2009; Schreiber et al., 
2011; Wu et al., 2014; Melnikova et al., 2015; Melnikova 
et al., 2016). We assumed that as a consequence of water 
deprivation the plants will suffer of nutrition deficiency. 
Both types of markers are characterized by differentially 
expressed activity under different nutrient deprivation 
(Hsieh et al., 2009; Soumitra et al., 2015; Melnikova et al., 
2016). Expressive activity of hvu-miR399 marker could be 
observed in leaves tissue of barley plants (Figure 4a). That 

is in line to results of studies (Lin et al., 2008; Pant et al., 
2008) which confirm the role of miR399 in shoot-to-root 
movement in the initial response to Pi deprivation. 

On the other site the activity of the miR399 biomarker 
might be also connected to nitrogen deficiency (Soumitra 
et al., 2015), which indicates a more general role of this 
marker in mineral homeostasis. There is an evidence that 
NITROGEN LIMITATION ADAPTATION (NLA) gene, which 
is regulated by miR827, participates on plant adaptation 
under low- nitrogen conditions, which at the same time 
induce the activity of miR399 (Kant et al., 2011; Soumitra 
et al., 2015).

The activity of the hvu-miR827 marker was not only 
tissue specific (Figure 4b) but also unique with respect to 

Figure 4	 Profile of DNA fragments amplified by markers hvu-miR399 (a) and hvu-miR827 (b) in control (B) and stressed (C) 
samples
L – leaves, S – stems, and R – roots

a) b)

Figure 5	 Amplified miRNA loci by individual markers in control (B) and stressed (C) samples
L – leaves, S – stems and R – roots 
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control and test variants. Surprisingly, we did not observe 
the activity increase of this marker due to the phosphate 
deficiency as recorded in several studies (Hsieh et al., 
2009; Schreiber et al., 2011; Soumitra et al., 2015;). On 
the contrary, the repression of miR827 in individual 
tissues was observed with the strongest reduction in 
leaves (Figure 5). Searching for the reasons of this pattern 
activity, we found out that expression of microRNA827 
is due to nitrogen deprivation down-regulated (Liang et 
al., 2015; Soumitra et al., 2015). There is an antagonistic 
interaction between the accumulation of phosphate and 
decrease of nitrogen supply (Kant et al., 2011). In view of 
the above, we could state that observed up-regulation 
of hvu-miR399 and down-regulation of hvu-miR827 
indicated insufficient supply of plant tissues with 
nitrogen under stress of pedocompaction.

Traffic induced compaction is a major problem of today‘s 
crop production as almost 85% of area is trafficked 
annually in a conventional cropping system (Kroulík et al., 
2011). This is considered to be one of the factors of yield 
stagnation (Keller et al., 2019). Effect of soil compaction 
on crop and yield has been described in many studies. For 
examples the research of (Chamen et al., 1995; Arvidsson 
1999; Radford et al., 2007) and others indicated reduced 
water and nutrient use efficiencies, and therefore yield of 
winter cereal crops grown in soils are affected by traffic 
compaction. Due to these, technologies to minimise the 
negative effect of machinery traffic on soil and crop has 
been developed and adopted across the world (Chamen 
2015). The significant effect of traffic compaction on crop 
development and yield at the experimental is described 
in following studies (Rajwanshi et al., 2014; Galambošová 
et al., 2017; Antille et al., 2019). Difference in yield 
between the non-trafficked area and areas with different 
level of compaction ranged from 9 to 33% for spring 
barley (Galambošová et al., 2017). The contribution of 
this study is in the novel and interdisciplinary approach 
of plant genome response analysis to soil compaction by 
miRNA-based molecular markers.

4	 Conclusions
We can conclude that the plant genome responds to 
the external abiotic stress factor. The molecular markers 
based on microRNAs sequences made it possible to 
detect changes in the level of genomic polymorphism. 
The number of amplified miRNAs loci was statistically 
significantly dependent on the stress-sensitive marker 
applied. As a result of the mechanical compression of the 
soil, the plants were exposed to a lack of moisture, which 
also limited the intake of nutrients. This consequently led 
to reduction of plant growth parameters and reduced 
yields. We consider such an interdisciplinary approach to 
a given issue to be innovative.
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