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1	 Introduction 

The atmospheric carbon dioxide (CO2) concentration 
is constantly increasing since industrial revolution due 
to anthropogenic activities, and is expected to double 
by 2050 (IPCC, 2013; Cotton et al., 2015; Kumar et al., 
2019). Indeed, elevated CO2 directly increases the net 
primary photosynthesis of crops, particularly C3 plants; 
stimulating the production of aboveground biomass 
production (Oliveira et al., 2010) and carbon (C) fluxes 
from aboveground parts into soil (Ghannoum et al., 
2010; McCarthy et al., 2010). Thus, the continuous rising 
atmospheric CO2 concentrations may indirectly affect 
the responses of soil microbial communities and the 
associated C and nitrogen (N) cycling in the rhizosphere 
(Bardgett et al., 2008; Butterly et al., 2016). Since plant 

mediates belowground processes, the responses of 
associated root microbes, which serve as sinks for the 
photoassimilates are likely to be system specific (Carrillo 
et al., 2014; Goicoechea et al., 2014). Given that soil 
microbes, particularly arbuscular mycorrhizal fungi 
(AMF) are actively involved in C and nutrient cycling in 
the agroecosystems (Cairney, 2012), there is an urgent 
need to better understand the effects of elevated CO2 on 
AMF and soil microbial properties in the rhizosphere of 
agricultural crops.

AMF are one of the most important soil microbes forming 
symbiotic association with 90% of terrestrial plants 
including most agricultural crops (Brundrett, 2009). AMF 
play an important role in promoting plant growth through 
nutrient uptake, especially phosphorus, in exchange for 
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carbon from the host plant (Wipf et al., 2019). They also 
account for about 5–50% of microbial biomass and about 
80% of fungal biomass (Kabir et al., 1997). The impacts 
of elevated CO2 on AMF are often reported by increased 
root colonisation, which is usually attributed to increased 
C assimilation rates by the host plant in exchange for 
increased nutrients demand by the host plant (Johnson 
and Gehring, 2007; Cairney, 2012). However, the shifts 
towards greater root colonisation by AMF may have 
important consequences on soil properties including 
nutrient supply to the plant, particularly P and N and 
microbial biomass C and N (Drigo et al., 2013).

Soybean [Glycine max (L.) Merrill] like most other 
legumes is highly mycorrhizal dependent (Adeyemi et al., 
2020). Being a C3 plant and a crop with high phosphorus 
(P) demand may be more sensitive to elevated CO2 
compared to other non-leguminous crops (Rogers et 
al., 2006). Soybean is reported to respond positively to 
elevated CO2 with higher productivity (Ziska and Bunce, 
2000; Sakariyawo et al., 2016; Adeyemi et al., 2017). 
Previous researchers have focused their studies on 
above ground changes in response to elevated CO2, but 
recently some of the findings revealed that elevated CO2 
could also influence below ground microbial properties, 
which in turn affects plant productivity (Bhattacharyya et 
al., 2016). In addition, the alteration of AMF responses in 
terms of sporulation and colonization of plant roots under 
elevated CO2 are yet elusive and there are inconsistences 
in previous reports (Johnson et al., 2005; Cotton et 
al., 2015; Parameswaran et al., 2019). Thus, this could 
hinder the prediction of microbial responses, particularly 
AMF in agroecosystem functioning (Singh et al., 2011; 
Johnson et al., 2013). Therefore, the growing awareness 
of the significant role of AMF for the maintenance of 
agroecosystem and promoting plant growth has led to 
considerable interest in the impacts of elevated CO2 on 
AMF activities in this present study. 

Thus, this study aims to investigate the effects of 
short-term elevated CO2 on AMF sporulation and root 
colonization, soil microbial properties in roots of soybean 
cultivars grown in open top chambers. The results of 
this study may help to to gain insights into how AMF 
and belowground process respond to the increasing 
atmospheric CO2.

2	 Materials and methods

2.1	 Experimental treatments and design
The study was conducted in Open Top Chambers (OTCs) 
at College of Plant Science and Crop Production, Federal 
University of Agriculture, Abeokuta. The pot experiment 
consisted of three promiscuous soybean cultivars (TGx 
1448-2E, TGx 1440-1E and TGx 1740- 2F) grown at two CO2 

levels (ambient; 350 ppm and elevated; 550 ppm) laid out 
in completely randomised design, replicated thrice. The 
soil used for the experiment was a non-sterile obtained 
from the Teaching and Research Farms of the University, 
with textural soil of sandy (Table 1). Each pot was filled 
with 10 kg of soil. The soil in the pots was watered to 60% 
of the water-holding capacity. Soybean cultivars TGx 
1448-2E, TGx 1440-1E and TGx 1740- 2F) were obtained 
from International Institute of Tropical Agriculture (IITA), 
Ibadan. Three seeds were sown in each pot on 10th of July, 
2015 and emerged seedlings were thinned to two plants 
per pot. As plants grew bigger, pots were watered to 70% 
of water-holding capacity. The pots were placed in OTCs 
at 350 and 550 ppm CO2 Carbon dioxide enrichment

Table 1	 Soil physical and chemical properties of the 
experimental site

Soil Property Value

Texture Sand

Sand (%) 87.9

Silt (%) 7.49

Clay (%) 4.61

pH (H2O) 6.5

Organic matter (%) 1.12

Nitrogen (mg kg-1) 0.80

Available phosphorus (mg kg-1) 5.23

Potassium (cmol kg-1) 0.44

Calcium (cmol kg-1) 2.54

Magnesium (cmol kg-1) 0.73

Sodium (cmol kg-1) 0.29

Total exchangeable acidity (cmol kg-1) 0.11

Exchangeable cation exchange capacity (cmol kg-1) 3.92

Each OTC was 3 × 4 m in cross section and 2.5 m in height. 
The frame was made of pipes covered with transparent 
polyvinyl chloride nylon sheet (transparency 85%). CO2 
was produced using a modified method of Saitoh et 
al. (2004). Yeasts and sugar were used to generate CO2. 
Twelve CO2 generator bottles were placed in the OTC 
to elevate the CO2 concentration. The maximum and 
minimum CO2 concentration in the OTC was measured 
daily throughout the enrichment period using a portable 
CO2 meter [NDIR Gas Analyzer (Bentech GM8883), China]. 
To avoid chamber specific bias in the experiment, pots 
were rearranged in the OTCs every week.
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2.2	 Data collection
	 Estimation of AMF spore density and root length 
	 colonisation

Rhizosphere soil samples from 0–20 cm depth were 
collected at 20, 40 and 60 days after planting (DAP) to 
determine AMF spore density. Extraction of AMF spores 
from the soil sample was conducted using the modified 
wet sieving method of Giovannetti and Mosse (1980), 
followed by centrifugation in 40% sucrose solution to 
extract the spores. Extracted spores were counted under 
a dissecting microscope at ×100 magnification. 

Collected root samples were prepared using the method 
as described by Phillips and Hayman (1970). Root 
samples collected were bleached in 10% KOH at 90 °C 
for 30 minutes and stained in acidic glycerol containing 
trypan blue lacto-glycerol (1 : 1 : 1 : 0.5 g) at 90 °C for 
2 minutes. The roots were viewed under compound 
microscope to determine percent root colonization using 
the formula below as described by Adeyemi et al. (2019, 
2020):

	 Measurement of soil microbial biomass C and N
Soil microbial biomass C and N were measured by 
using the chloroform fumigation extraction method 
(Vance et al., 1987). The dry soil samples were divided 
into two portions (10 g per portion) to measure 
the soil microbial biomass carbon (SMBC) and soil 
microbial biomass nitrogen (SMBN). SMBC in filtrates 
was determined by the K2Cr2O7 wet-oxidation method. 
Briefly, 2 ml of extract, 2  ml of 1 N K2Cr2O7 and 4 ml of 
98% H2SO4 were reacted at 130 °C for 40 min. Solutions 
with known concentrations of C12H22O11 were included as 
standards. After cooling, the C concentration in digests 
was determined spectrophotometrically at 600 nm. The 
C contained within digested non-fumigated samples 

was denoted extractable organic C and the SMBC was 
estimated as the difference between the fumigated and 
non-fumigated samples and applying a conversion factor 
of 0.38 (Singh et al., 2017). SMBN in filtrates was assayed 
by the semi-micro Kjeldahl method. Specifically, 2.5 ml of 
extract and digestion mix (50 g K2S2O8 and 30 g H3BO4 in 
100 ml of 3.75 M NaOH were autoclaved (121 °C, 104 kPa) 
for 30 min and stored at 4 °C until analysis. Solutions 
with known concentrations of CO(NH2)2 were included 
as controls. SMBN was calculated from the differences 
between the organic N extracted from the fumigated 
and non-fumigated samples by using conversion factor 
of 0.54 (Huang et al., 2014).

2.3	 Soybean growth
The plants were harvested and oven dried (60 °C, 72 h) 
prior to weighing to determine dry plant biomass. At 95% 
harvest maturity, yield attributes and seed yield were 
collected on the number of pods per plant, number of 
seeds per pod, 100 seed weight and seed yield per plant.

2.4	 Statistical analysis
Data were subjected to analysis of variance (ANOVA). The 
Duncan’s multiple range (DMR) test at P <0.05 probability 
level was used to determine the differences among mean 
values. The statistical package used was Genstat 12th 
Edition. 

3	 Results and discussion

3.1	 Effects of elevated CO2 on AMF spore density 
	 and percent root colonization
The result showed that elevated CO2 significantly 
increased the spore density of AMF in rhizospheric soil 
of the soybean cultivars at 40 and 60 DAP (Table 2). 
Higher spore density of 166 and 216 spores per 20 g soil 
was recorded in TGx 1448 2E grown under elevated CO2 
concentration (500 ppm) at 40 and 60 DAS respectively. 
The percent root colonization of the soybean cultivars 

Table 2	 Effect of elevated CO2 on AMF spore density in rhizospheric soil of three soybean cultivars

Cultivars Atmospheric CO2
AMF spore density (per 20 g dry soil)

20 DAP 40 DAP 60 DAP

TGx 1440 1E
Ambient 30.0a 111.7cd 143.3b

Elevated 38.3a 155.0ab 208.3a

TGx 1448 2E
Ambient 33.3a 115.0c 155.0b

Elevated 35.0a 166.7a 216.7a

TGx 1740 2F
Ambient 26.7a 86.7d 135.0b

Elevated 36.3a 128.3bc 211.7a

Treatments followed by the same letters are not significantly different at P <0.05 level; DAP (days after planting)
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SMBN significantly increased by 44.6%, 50.8% and 54.9% 
in the roots of TGx 1440 1E, TGx 1448 2E and TGx 1740 2F 
cultivars respectively. 

Figure 2	 Dynamics of soil microbial biomass carbon 
(SMBC) in the 0–10 cm soil layer of soybean 
cultivars as affected by elevated CO2

Figure 3	 Dynamics of soil microbial biomass nitrogen 
(SMBN) in the 0–10 cm soil layer of soybean 
cultivars as affected by elevated CO2

3.3	 Soil nitrogen and available phosphorus
The result showed that the total nitrogen and available 
phosphorus in the soil increased significantly with 
elevated CO2 in the soil of all the three cultivars. Compared 
with ambient CO2, total N significantly increased by 

was significantly influenced by elevated CO2 with higher 
root colonization observed in the cultivars grown 
under elevated CO2 (Figure 1a, b, c). The mean percent 
colonization ranged from 50.7 to 88% at 60 DAP.

Figure 1	 Effect of elevated CO2 on AMF root colonization 
of soybean cultivars at 20 DAP (A), 40 DAP (B) and 
60 DAP (C)

3.2	 Soil microbial biomass C and N
Elevated CO2 caused significant changes in the soil 
microbial biomass C and N. Specifically, the SMBC 
increased significantly under the elevated CO2 in 
the rhizospheric soils of the three soybean cultivars. 
The SMBC in the soil layer of the soybean was in the 
range of 511 to 659 mg kg-1 under the elevated CO2 
compared to range of 336 to 360 mg kg-1 under ambient 
condition. Compared with the ambient treatment, SMBC 
significantly increased by 40.9%, 45.4%, and 34.2% 
in the roots of TGx 1440 1E, TGx 1448 2E and TGx 1740 
2F cultivars respectively (Figure 2). Moreover, SMBC 
was higher in TGx 1448 2E than other cultivars under 
the elevated CO2. Similarly, SMBN increased with an 
increased CO2 (Figure 3). Compared with ambient CO2, 
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37.2%, 50.6% and 30.3% in the soil of TGx 1440 1E, TGx 
1448 2E and TGx 1740 2F cultivars respectively (Figure 4). 
Similarly, compared with ambient CO2, the soil available 
P significantly increased by 45.7%, 20.8% and 39.8% in 
the roots of TGx 1440 1E, TGx 1448 2E and TGx 1740 2F 
cultivars respectively (Figure 5).

Figure 5	 Dynamics of soil available phosphorus (mg kg-1) 
in the 0–10 cm soil layer of soybean cultivars as 
affected by elevated CO2

3.4	 Effects of elevated CO2 on plant biomass 
	 and yield components of soybean cultivars
The result showed that the above ground dry biomass 
and all the yield attributes measured were significantly 
influenced by elevated CO2 (Table 3). The soybean 
dry  biomass, number of pod, number of seed per 
pod, 100-seed weight and seed yield per plant were 
significantly higher in the three cultivars grown under 
elevated CO2 compared to the ambient control.

The effects of the elevated CO2 on soil microorganisms 
may be direct or indirect. This present study investigated 
the effects of elevated CO2 on AMF sporulation and root 
colonization and soil microbial properties in roots of 
soybean cultivars. In the present study, root colonization 
of the soybean cultivars increased under elevated CO2. 
Elevated CO2 concentrations have been reported to 

affect the AMF hyphal growth and root colonization. The 
result of this study agrees with reports of previous studies 
(Compant et al., 2010). However, Goicoechea et al. (2014), 
have also reported a contrary result. The increased root 
colonization of the soybean cultivars may be explained 
by increase flow of C from the host to AMF being a strong 
sink of C fixed during photosynthesis by host plants 
under elevated CO2 (Smith and Read, 2008; Ghannoum 
et al., 2010; Cairney, 2012) in exchange for additional 
nutrients uptake, especially P (Moran and Jastrow, 2010). 
For example, Rillig and Allen (1999) reported an increased 
growth of external as well as internal hyphae of AMF in 
the rhizosphere of Prunella vulgaris under elevated CO2 
(600 ppm) due to increased root biomass and higher 
allocation of fixed C to the external hyphae. Furthermore, 
in a metal-analysis by Alberton et al. (2005), a significant 
positive response of AMF to elevated CO2, causing a 21% 
increase in root colonization was revealed. However, 
Gavito et al. (2000) observed no effect of elevated CO2 
(700 ppm) on root colonization in pea (Pisum sativum L.). 
Another mechanism for the increased root colonization 
of the soybean cultivars could be attributed to rapid 
release of flavonols needed for chemotactic action 
on AMF, which stimulate the hyphal growth and root 
colonization (Bécard et al., 1992). 

In this study, microbial biomass C and N increased 
under elevated CO2, which is in agreement with some 
elevated CO2 studies (Jin et al., 2013; Butterly et al., 2016; 
Panneerselvam et al., 2019). The increase in the microbial 
biomass C have been associated with higher C inputs 
or rhizodeposition (Drissner et al., 2007; Cheng et al., 
2011), which stimulates microbial growth and increases 
biomass. A recent review of 68 studies revealed that the 
average microbial biomass C increase is 14% and N is 
7.4% (Liu et al., 2018). Thus, the effects depend on the 
specific soil conditions, which are mainly controlled by N 
limitation (Sillen and Dieleman, 2012). However, elevated 
CO2 did not influence the microbial biomass C in some 
other studies (Weigel et al., 2005; Reinsch et al., 2013; 

Table 3	 Effect of elevated CO2 on dry biomass, pod number, seed number per pod, seed weight 100 grain-1, and seed 
weight per plant of soybean cultivars

Cultivars Atmospheric 
CO2

Dry biomass
(g plant-1)

Pod number 
(n plant-1)

Seed number 
(n pod-1)

Seed weight 
(g 100 grain-1)

Seed yield (g plant-1)

TGx 1440 1E Ambient 24.7d 41.0c 2.4c 9.73b 9.69d

Elevated 38.4ab 57.0a 2.7ab 11.3a 17.5b

TGx 1448 2E Ambient 30.9c 48.4b 2.6b 9.9b 12.4c

Elevated 41.3a 61.0a 2.8a 11.4a 19.5a

TGx 1740 2F Ambient 19.7d 31.6d 2.3c 8.22b 6.13e

Elevated 35.2b 55.2a 2.7ab 10.6a 15.8b

Treatments followed by the same letters are not significantly different at P <0.05 level
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Haugwitz et al., 2014). The increased microbial biomass 
N observed in this study could be associated with the 
activities of the rhizobia in the roots of the soybean, 
which helps in N-fixation in the rhizosphere (Kuzyakov et 
al., 2018). However, in some studies, microbial biomass 
N was not affected by elevated CO2 (Schortemeyer et 
al., 2000; Zak et al., 2000). Furthermore, the higher soil 
N in this study may be attributed to reduced nitrate 
leaching under elevated CO2 (Cannell and Thornley, 
1998; Matamala and Drake, 1999). In contrary, elevated 
CO2 has been observed to increase denitrification or N2O 
fluxes, therefore, potentially reduce N retention (Ineson 
et al., 1995). Generally, the increased microbial biomass 
properties (C and N), soil N and P could also be explained 
by the functional role of AMF for nutrients cycling 
particularly C, N and P, which is more intensified under 
elevated CO2 2 (Denef et al., 2007; Drigo et al., 2013; Fang 
et al., 2015). Thus, the microbial responses to elevated 
CO2 are expected to vary among ecosystems, since 
responses to elevated CO2 are positively related to the 
plants or crops grown, soil-type specific and microbial 
communities in the soil (Nie et al., 2013; Pendall et al., 
2013; Procter et al., 2014),

The present study also revealed increased seed yield 
and yield attributes of the soybean cultivars under 
elevated CO2. The result was in consistent with previous 
reports (Sakariyawo et al., 2016; Adeyemi et al., 2017). 
This positive response could be attributed to enhance 
net photosynthesis and dry matter accumulation prior 
to the formation of the yield attributes, resulting in 
improve seed yield. Results of several other studies have 
suggested that elevated CO2 will result in increased 
photosynthesis of C3 plants by 30–50% (Yang et al., 2006; 
Ainsworth and Rogers, 2007). In addition, the increased 
yield performance in this study could also be attributed 
to the enhanced AMF root colonization, which helps 
in nutrients uptake, particularly P and water, as well as 
improved soil properties in terms of soil N and P and 
microbial C and N.

4	 Conclusions
The results of this study demonstrates that elevated CO2 
concentration had significant effect on AMF activities 
in the rhizosphere as well as the soil microbial biomass 
by increasing the root colonization, soil N and P and 
microbial biomass C and N. This resulted in higher seed 
yield and yield attributes of the soybean cultivars. Further 
investigation is required to ascertain the responses of 
AMF and other soil microbial communities in the cycling 
of C, N and P under different crops in response to elevated 
CO2. This study may help to better forecast how the AMF 
and soil microbes respond with increasing atmospheric 
CO2.
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