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This study aims to genetically evaluate clinical mastitis (CM) in Holstein cattle using a two-trait repeatability 
animal model with the average lactation somatic cell score (LSCS) as an indicator trait of mastitis. The data set 
included 21,786 Holsteins with 29,110 lactations in 59 herds and with a calving date between 2015 and 2019. CM 
was considered as an all-or-none trait (values 0 or 1) in the period from calving to 305 days in milk, and the LSCS 
was obtained by logarithmic transformation of the average of the individual test-day records for somatic cell count 
over lactation. Heritability of CM was estimated using a single-trait repeatability animal model, whereas the 
genetic correlation between CM and LSCS was assessed through a two-trait repeatability animal model. Fixed 
effects included in the analyses were parity-age and herd-year-season, and the random effects were the 
permanent environment and the animal. The (co)variance matrix was employed in breeding values estimation for 
both single-trait (only CM) and bivariate models (CM and LSCS) including genomic prediction. Only genotyped 
sires formed the reference population for the single-step genomic evaluation. The heritability for CM was 0.04 in 
the single-trait and 0.05 in the two-trait analysis. Genetic correlation between CM and LSCS was 0.80. The 
employment of the two-trait model had a considerably strong influence on reliability. The reliability increased for 
cows with records as well as for the genotyped sires. This study indicates that the two-trait analysis of CM and 
LSCS is feasible and improves the reliability of the estimated breeding values.  
Keywords: mastitis, cow, genomic breeding value, multi-trait model, somatic cell score  
 

 

1 Introduction  

Clinical mastitis (CM) in dairy cows causes noticeable deterioration in the production and reproduction 
of animals (Oltenacu and Broom, 2010) as well as considerable worsening of cow’s welfare. Also, CM 
is often the reason for culling. According to Kvapilík et al. (2016), udder diseases are the most 
common reasons for involuntary culling of dairy cows in the Czech Republic. Rilanto et al. (2020) 
reported that udder disease is the second most common reason for culling, after foot and claw 
disorders. The improvement of cow treatment and herd management can lead to a decrease of the 
CM incidence in dairy herds. Still, the selection of animals based on genetic evaluation should be used 
for the strengthening of heritable resistance to udder diseases. Breeding for a reduced rate of CM in 
dairy herds can be achieved by direct selection based on CM records combined with indirect selection 
using genetically correlated traits. Nevertheless, CM generally shows low heritability (up to 10%) 
(Martin et al., 2018). Neuenschwander et al. (2012) claimed that because of low heritability of CM, only 
slow genetic improvement can be expected unless CM is strongly weighted in the selection index. 
Heringstad et al. (2001) have confirmed the positive results of direct genetic selection on CM traits. 

The somatic cell count (SCC) or its logarithmic expression, i.e. somatic cell score (SCS), are widely 
used as indicator traits for CM and subclinical mastitis due to their strong phenotypic and genetic 
relationships with udder health and to higher heritability than CM. Rupp and Boichard (2003) estimated 
a heritability around 0.15 with a range from 0.10 to 0.18 for average lactation somatic cell score 
(LSCS) obtained by averaging the individual test-day records over lactation. Positive genetic 
correlation of 0.70 between CM and LSCS was published by Carlén et al. (2004). Pérez-Cabal and 
                                                            
∗  Corresponding Author: Ludmila Zavadilová, Institute of Animal Science, Prague-Uhříněves, Czech Republic. E-mail: 
zavadilova.ludmila@vuzv.cz. 

https://doi.org/10.15414/afz.2020.23.mi-fpap.233-240


Acta fytotechn zootechn, 23, 2020(Monothematic Issue  :: Future Perspectives in Animal Production), 233-240 
http://www.acta.fapz.uniag.sk 

© Slovak University of Agriculture in Nitra                                             Faculty of Agrobiology and Food Resources 

234 

Charfeddine (2013) reported genetic correlations between LSCS and CM from 0.76 to 0.85. 
Heringstad et al. (2006) stated that based on a high genetic relationship, LSCS is a valid indicator of 
CM, but still, LSCS is only an indirect selection trait.  

The most significant response to selection against CM could be expected if CM, as the direct trait, 
would be used in combined estimation with an indirect trait such as LSCS. The multi-trait model 
approach is qualitatively better in comparison to the single-trait model because of the higher accuracy 
of the breeding values (Schaeffer, 1984) and a better model prediction performance (Negussie et al., 
2005).  

Heritability estimates for CM in Czech Holstein cattle were 0.11 (Wolf et al., 2010), 0.07 (Zavadilová et 
al., 2015), and 0.09 to 0.10 (Zavadilová et al., 2017). Kašná et al. (2018) provided further estimates of 
genetic parameters and breeding values based on the available data and obtained heritability from 
0.08 to 0.11 for CM. Zavadilová et al. (2015) estimated genetic correlations from 0.79 to 0.83 between 
CM and LSCS. The same authors estimated an LSCS heritability of 0.23. 

The aim of this study was to perform a genetic evaluation of CM in Czech Holstein cattle using the 
two-trait linear animal model with LSCS as an indicator trait of CM. 
 
 

2 Material and methods  

2.1 Materials  
Records of CM were collected by farmers and registered voluntarily in the national cattle health 
monitoring system, called “The Diary of Diseases and Medication” (The Diary; Šlosárková et al., 
2016). In the Czech Republic, this recording system was implemented in August 2018 after a one-year 
trial period. It consists of an on-line health recording form for farmers and a simplified key of diagnoses 
based on the recommendations of the International Committee for Animal Recording (ICAR). The data 
for cows’ lactation traits, such as the date of calving, SCC, length of lactation, and parity were 
extracted from the official database of the Holstein Cattle Breeders Association of the Czech Republic 
provided by the Czech Moravian Breeders’ Corporation, Inc.. A minimum of 5 daughters per sire, 50 
cows per herd and ten contemporaries per herd-year-season was required. Only cows with a lactation 
length of at least 240 days were included in the analysis. The condition that the cow must always have 
the first lactation was not applied due to the relatively short period of data collection. SCC was 
transformed to LSCS according to the following formula (Ali and Shook, 1980): LSCS = 3 + 
log2(SCC/100). After editing, the dataset included 21,786 Holstein cows with 29,110 lactations in 59 
herds and with a calving date between 2015 and 2019. The basic statistics of the data are shown in 
Table 1. 

Table 1 Basic statistics of the final dataset 

Item No. Mean ± SD Minimum Maximum 
Cows 21,786    
Lactations 29,110 2.06 ± 1.16 1 6 
CM 29,110 0.23 ± 0.42 0 1 
SCC (1,000/ml) 29,110 214.9 ± 306.3 12 5,153 
LSCS 29,110 3.48 ± 1.47 1 5 

CM – clinical mastitis; SCC – somatic cell count; LSCS – average lactation somatic cell score 

 

2.2 Statistical methods  
The following repeatability linear animal model was employed to estimate heritability for CM (single-
trait analysis) or genetic correlation between CM and LSCS (two-trait analysis): 

yijkl = HYSi + Pa_agej + pek + al + eijkl, 

where yijkl is CM considered as an all-or-none trait (0 = no CM case; 1 = at least 1 CM case) in the 
period from calving to 305 days in milk, or/and LSCS; HYSi is the fixed combined effect of the herd (59 
levels), year of calving (5 levels, 2015 to 2019), and the season of calving (4 levels: January, 
February, March; April, May, June; July, August, September; October, November, December), for a 
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total of 546 levels; Pa_agej is the fixed effect of parity-age class (15 levels; first, second, third, fourth, 
and fifth + sixth parity, and 3 age classes per parity); pek is the random permanent environmental 
effect of the cow (21,786 levels); al is the random additive genetic effect of the animal (84,205 levels); 
and eijkl is the random residual effect.  

Estimated breeding values (EBV) were predicted through the same single-trait (only CM) and two-trait 
models (CM and LSCS) used to estimate genetic parameters. The pedigree file contained 84,205 
animals (4 generations were traced back). Sires (n = 4,568) were genotyped using the Illumina 
BovineSNP50 Bead chip (Illumina, San Diego, CA, USA). 

A single-step procedure was applied (Aguilar et al., 2010, Christensen and Lund, 2010) for genomic 
breeding value estimation. A genomic relationship matrix (G) was calculated according to deviations 
from the averages of observed allele frequencies and standardised using division by the average 
value of the diagonal of G. Average of diagonal elements was 1 (Forni et al., 2011). The elements of 
an additive pedigree relationship matrix for genotyped animals A22 and elements of G have the same 
average (Vitezica et al., 2011). The total number of effective SNP used in the calculation of G matrix 
was 38,883, that of effective animals was 4,380, and the total number of parent-progeny evaluations 
was 2,992. 

The relative EBV (REBV, in %) were calculated using an average of predicted breeding values for 
each separate analysis as 100% and with a SD of 12%. Higher relative breeding values mean a 
favourable value for CM or LSCS, i.e. higher resistance to disease.  

Variance and covariance components, EBV, and their reliability (REL) were estimated with the 
BLUPF90 family of programs: RENUMF90 for the renumbering of effects, pedigree file, and 
incorporation of the genomic matrix; REMLF90 for variance components estimation; BLUPF90 for EBV 
and genomic breeding value estimation; and ACCf90 for reliability calculation (Misztal et al., 2018). 
The SAS software package, version 9.4 (SAS Institute Inc., Cary, NC, USA) was used for data editing 
and calculation of basic statistics. 

 

3 Results and discussion  
The lactation incidence rate for CM across the lactations was 23%, and it increased with parity with 
values of 16% for primiparous and 33% for animals of the fifth parity (Table 2). Our findings on the 
lactation incidence rate increasing with parity agree with Mrode et al. (2012), except for lactation 
incidence rates which are higher in our study. 

Table 2 Lactation incidence rate (LIR) for clinical mastitis (CM) and mean ± standard deviation (SD) 
for average lactation somatic cell score (LSCS)   

Parity n LIR CM Mean LSCS ± SD 
1 11,934 0.16 2.98 ± 1.19 
2 8,436 0.25 3.34 ± 1.34 
3 5,213 0.29 3.71 ± 1.42 
4 2,333 0.32 3.92 ± 1.45 
5 897 0.33 4.07 ± 1.49 
6 297 0.32 4.12 ± 1.46 

Total 29,110 0.23 3.34 ± 1.36 
 

The variances, heritabilities, and genetic correlations estimated for CM and LSCS are in Table 3. The 
additive genetic and residual variances for CM were higher, and the permanent environmental 
variance was lower in the two-trait than in the single-trait model. The total variance was the same in 
both models. Consequently, heritability was higher in the two-trait than in the single-trait model. The 
heritabilities for CM were 0.04 and 0.05 for the single-trait and the two-trait model, respectively. If a 
linear model was used to estimate the heritability of the CM, the published values correspond to our 
estimates. For example, Negussie et al. (2010) reported heritability of CM from 0.03 to 0.06. Mrode et 
al. (2012) estimated average heritability of 0.05, 0.07, and 0.09 for the first, second, and third parity 
when the random regression model was applied. Jamrozik et al. (2013) estimated heritability of 0.03 in 
the first parity and 0.05 in later parities. Pérez-Cabal et al. (2009) published a heritability of 0.07 in 
Spanish Holstein cattle, and Zavadilová et al. (2017) reported a heritability of 0.05. Heritability is 
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usually higher for the number of CM cases than for CM expressed as a binary trait. Wolf et al. (2010), 
Pérez-Cabal et al. (2009), and Vazquez et al. (2009) published a heritability of 0.10 for CM. For the 
number of CM cases, Mrode et al. (2012) reported heritabilities of 0.06, 0.07, and 0.12 for the first, 
second and third parity, respectively. For LSCS, the estimated heritability was 0.13. This value is lower 
than the value of 0.23 published by Zavadilová et al. (2015) but close to the mean daily heritabilities 
for SCS of Mrode et al. (2012), i.e. 0.11, 0.14, and 0.15 for the first, second, and third parity, 
respectively. Buch et al. (2011) and Carlén et al. (2004) estimated heritability for LSCS of 0.10 and 
0.14, respectively, i.e. similar to our finding.  

Genetic correlation between CM and LSCS was 0.80, in agreement with Carlén et al. (2004) and 
Ødegård et al. (2004). Similarly, Pérez-Cabal and Charfeddine (2013) reported a genetic correlation of 
0.85 between SCS305 and CM as a binary trait. In the multi-trait models, the accurate estimation of 
genetic parameters is necessary. Schaeffer (1984) pointed out that the incorrect estimation of genetic 
correlation between traits would lead to higher prediction error variance, mainly in traits with low 
heritability.  

Table 3 (Co)variances, heritability, and correlations for clinical mastitis (CM) and average lactation 
somatic cell score (LSCS) estimated using the single-trait model (for CM) and two-trait model 

 Single-trait model Two-trait model 
 CM CM LSCS 
Variances Estimate ± SE Estimate ± SE Estimate ± SE 
   Additive 0.00609 ± 0.00118** 0.00706 ± 0.00104** 0.2000 ± 0.0213** 
   Permanent 
   environmental 0.01029±0.00191** 0.00869 ± 0.00124** 0.2627 ± 0.00119** 
   Residual 0.1348 ± 0.0019** 0.1356 ± 0.0022** 1.1010 ± 0.0206** 
   Total 0.1512 0.1515 1.5637 
   Heritability 0.040 ± 0.011* 0.047 ± 0.006* 0.128 ± 0.011** 
Covariances / 
correlations  CM x LSCS 
   Additive  0.03026 ± 0.0038** / 0.80 
   Permanent 
   environmental  0.03494 ± 0.0054** / 0.73 
   Residual  0.20880 ± 0.0049** / 0.21 

SE – standard error. *P <0.05, ** P <0.01 

 

The estimated (co)variance matrixes were used for prediction of breeding values for CM and their 
REL. The resulting trends of REBV and REL averaged by year of birth of cows and sires are in Figure 
1 and Figure 2, respectively. The REBV for different traits and models are mutually comparable 
because they are based on the average of EBV for each model prediction. Trends of REBV are very 
similar for the single-trait and the two-trait model as well as for CM and LSCS. The averages are very 
close to 100%. The trends for cows and sires for CM are decreasing. However, the genetic trends for 
LSCS are slightly increasing, especially in sires, where they eventually exceed 100%. This course is 
likely a consequence of the selection for udder health based on SCS that has been employed in the 
Czech Holstein population for the last three decades. Despite this, the trends for CM did not change 
noticeably by using the two-trait instead of the single-trait model for prediction. The alteration of the 
model had a considerably strong influence on REL. The average REL by birth year increased in cows 
as well as in sires. However, the values of the two-trait model were higher than the values of the 
single-trait model. 

Similar results for REL of CM EBV are presented in Table 4. The average reliabilities of CM EBV from 
the single-trait and the two-trait model are presented. It is evident that REL is vastly larger when the 
two-trait model, instead of the single-trait model is used regardless of the sex of the animals or 
employment of genomic prediction. For all animals or cows with records, the average REL from two-
trait model rise two times compared to the single-trait model. The differences by genomic evaluation 
were minimal, especially in cows, and no change in REL was found. On the contrary, the average REL 
increased for genotyped sires as a consequence of the use of the two-trait model or genotypic 
evaluation. The increase was the same (9 percentage points) for the single-trait and the two-trait 
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model or for the conventional and the genomic evaluation. Different effects of genomic prediction 
according to the group of animals can be explained by the selection of genotyped animals for the 
genotypic reference population and relationship of other animals to genotyped animals. In the present 
study, only genotyped sires constitute the reference population. Therefore, those sires are the most 
influenced by using genotypic evaluation. The positive effect of the two-trait model evaluation was 
found for every animal but mostly for cows with records. As Buch et al. (2011) stated, the phenotype of 
the animal for one trait helps predict the Mendelian sampling term for the second trait in the model. 

 
Table 4 Estimated reliabilities (%) for clinical mastitis (CM) breeding values obtained from single-trait 
model and two-trait model 

Model n Mean ± SD Minimum Maximum 
Animals 

Single-trait; 
conventional 

84,205 7.8 ± 6.8 0 82.0 

Two-trait; 
conventional 

84,205 14.8 ± 11.3 0 84.8 

Single-trait; 
genomic 

84,205 8.3 ± 7.3 0 82.5 

Two-trait; genomic 84,205 15.1 ± 11.6 0 85.5 
Genotyped sires 

Single-trait; 
conventional 

4,568 11.0 ± 9.6 0 82.1 

Two-trait; 
conventional 

4,568 18.9 ± 13.4 0 84.8 

Single-trait; 
genomic 

4,568 19.4 ± 9.9 0 82.5 

Two-trait; genomic 4,568 29.8 ± 11.9 0 85.5 
Cows with records 

Single-trait; 
conventional 

21,786 12.3 ± 5.0 0.3 28.9 

Two-trait; 
conventional 

21,786 26.4 ± 5.3 9.9 41.6 

Single-trait; 
genomic 

21,786 12.3 ± 5.0 0.3 28.9 

Two-trait; genomic 21,786 26.0 ± 5.0 9.8 40.8 

SD – standard deviation 

 

Correlations between EBV or REL for CM predicted by different models are presented in Figure 3. The 
decrease of correlations is proportional to the degree of differences between the breeding value 
prediction or REL estimates due to alterations in the used models. The correlations are compared for 
three different groups: all animals in the analysis, genotyped sires, and cows with records. Regarding 
EBV, the correlations between EBV predicted by the single-trait model and EBV predicted by the two-
trait model were very similar, irrespective of conventional or genomic prediction. If the correlations 
were estimated between predictions both from the single-trait or the two-trait model, the correlations 
were higher than in the previous comparison. The lowest correlations occurred between EBV when the 
employed models differed in both characteristics, the number of traits and genomic prediction. The 
correlations were similar for all animals and cows with records. We can conclude that the changes in 
EBV were more substantial by employing the two-trait model instead of the single-trait model, and a 
genomic prediction instead of a conventional one. For the genotyped sires, the results are different 
because of the more important effects of genomic prediction on their EBV. Therefore, the correlations 
are substantially lower between EBV predicted by the conventional model and EBV predicted by the 
genomic model.  
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Figure 1 Trends of relative breeding values and reliabilities of cows for clinical mastitis and average 
lactation somatic cell score predicted by different models 

 

 

Figure 2 Trends of relative breeding values and reliabilities of sires for clinical mastitis and average 
lactation somatic cell score predicted by different models 
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Figure 3 Correlations between breeding values or reliabilities for clinical mastitis predicted by different 
models 

The impact of model change on REL was different in each analysed group. The lowest correlations, 
i.e. the most significant changes in REL occurred for genotyped sires due to using the two-trait instead 
of the single-trait model. In compliance with Table 4, the REL of genotyped sires was the most 
influenced by genomic prediction, but the REL of other groups, i.e. all animals and cows with records, 
were affected less by genomics and more by the number of traits in the model.. 

4 Conclusions  
This study indicates that the two-trait analysis of CM and LSCS using the repeatability linear animal 
model based on whole lactations is feasible and enables an increase in the REL of EBV. The genomic 
prediction improves the resulting REL in the genotyped animals and their close relatives. The obtained 
genetic parameters were comparable with other studies. 
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