
Acta fytotechn zootechn, 23, 2020(Monothematic Issue  :: Future Perspectives in Animal Production), 334-340 
http://www.acta.fapz.uniag.sk 

© Slovak University in Nitra                                                                   Faculty of Agrobiology and Food Resources 

334 

https://doi.org/10.15414/afz.2020.23.mi-fpap.334-340                Original Paper 
Submitted 2020-08-09   |   Accepted 2020-09-21   |   Available 2020-12-01 

 
Genome sequence variation in two subspecies of western 
honeybee, A. m. carnica and A. m. ligustica 
 
Minja Zorc1, Janko Bozic2, Peter Dovc1∗ 
1 University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Ljubljana, Slovenia 
2 University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia 
 

  Licensed under a Creative Commons Attribution 4.0 International License 

 
 

Populations of western honeybee (Apis mellifera) show differences in morphology, physiology and 
behaviour as a result of adaptation to various habitats. A. m. carnica, which inhabits the South-East 
and Central Europe, and A. m. ligustica, which is endemic on Apennine peninsula, represent 2 closely 
related honeybee subspecies living in the neighbouring climatic regions. In the current study, 
3,655,618 polymorphisms were identified from the whole genome sequences of 37 individual drone 
genomes, from A. m. carnica (n=27) and A. m. ligustica (n=10). The analysis revealed variation in 
genes involved in biological pathways associated with energy production and conversion, cell cycle 
and cytokinesis. 
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1 Introduction 
The genus Apis consists of at least 9 honeybee species which are all except western honeybee (Apis 
mellifera) native to southern and eastern Asia (Engel, 1999). As the Asian species of honeybee live in 
mild tropical climate, they have no need to gather large food stores because they can meet their needs 
throughout the year (Ruttner, 1988). The western honeybee, which is kept by most beekeepers, is 
native to Europe, Africa and part of Asia, west of the Caspian sea (Webster, 2008). However, due to 
human activities, it has become naturalized through much of the rest of the world. Populations of 
honeybee show differences in morphology, physiology and behaviour as a result of adaptation to 
various habitats (Le Conte et al., 2008; De la Rúa et al., 2009). There are more than 26 distinct 
Western honeybee subspecies which can be assigned to 5 evolutionary branches: A (South and 
Central Africa), C (Central and Southeast Europe), M (Western and North Europe), O (Near and 
Middle East) and Y (Ethiopia) (Cridland et al., 2017). The honeybees of group C, A. m. carnica, A. m. 
ligustica, A. m. caucasica and A. m. macedonica, are variable in behaviour and colour and are 
adapted to various climates (Ruttner, 1988). 

A. m. carnica, commonly known as the Carniolan bee, which inhabits the South-East and Central 
Europe, and A. m. ligustica, commonly known as the Italian bee, inhabiting Apennine peninsula, 
represent 2 closely related honeybee subspecies living in neighbouring climatic regions (Ruttner, 
1988) with evidence of admixture in the natural hybridization zone (Dall'Olio et al., 2007). A. m. 
ligustica bees are yellowish-brown and exhibit low swarming tendencies, while A. m. carnica are 
darker in colour, less aggressive, resistant to disease and good house cleaners (Caron et al., 2013). 
Studies on metabolic rate and thermal limits of both subspecies suggest that A. m. ligustica 
populations can tolerate a high temperature exposure better than A. m. carnica populations (Kovac et 
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al., 2014). There are also variations in the waggle dance between the 2 subspecies (Boch, 1957; 
Bozic et al., 2016). Several experiments showed no differences regarding learning and memory 
retention in both subspecies (Hoefer et al., 1975; Iqbal et al., 2019). Also, there were no differences 
between queens of both subspecies morphometrically or in spermathecal expression of antioxidant-
encoding genes (Catalase, GLOD4L, SOD1, TXN2, TXNRD1 and Vitellogenin). However, there was a 
trend for a higher level of GSTD1 gene expression in the spermathecae of virgin Italian queens 
compared to virgin Carniolan queens (Gonzalez et al., 2018). Furthermore, there were no statistical 
differences in spermathecal sperm counts or sperm viability between Carniolan and Italian mated 
queens (Gonzalez et al., 2018). Proteomic analysis of royal jelly from both subspecies revealed 
differences in the heterogeneity of the major royal jelly proteins, in particular MRJP3 (Li et al., 2007). 
The comparison of enzyme activities of Carniolan and Italian honey bees, both, uninhibited and after 
incubation with synergists, gave no significant differences for studied enzymes, which leads to the 
conclusion that the 2 populations are biochemically similar and comparable (Todeschini et al., 2017). 
However, in an earlier study, Rinkevich et al. (2015) tested the variation in insecticide susceptibility 
among honeybee subspecies and there was a large variation in sensitivity to several insecticides 
between A. m. ligustica and A. m. carnica. The largest variation in sensitivity was observed in 
neonicotinoid bioassays, where mutations or post-transcriptional modifications of nicotinic 
acetylcholine receptors can affect neonicotinoid sensitivity. The significant variance was noticed also 
in pyrethroid toxicity, which indicates variation in P450 metabolism or voltage-gated sodium channel 
associated with pyrethroid resistance (Rinkevich et al., 2015).  

Whole genome sequences of 10 individual genomes of A. m. ligustica drones and 27 individual 
genomes of A. m. carnica drones were applied in the current study to identify sequence variation in 
subspecies. The identified polymorphisms at the whole genome level among both subspecies could be 
the first step for their differentiation at the molecular level.  

 

2 Material and methods 

2.1 DNA extraction and sequencing 
Eight drones of A. m. carnica were collected in Slovenia in the pupae/nymph stage. The genomic DNA 
was extracted from the head and thorax of the frozen larvae cut into small pieces with a scalpel. The 
DNA extraction was performed using E.Z.N.A. Tissue DNA Kit (Omega Bio-Tek, U.S.A.) according to 
manufacturer’s recommendations. The concentration of genomic DNA for DNA sequencing was 
adjusted to 50 ng/µl. Pair-end sequencing was performed on Illumina NovaSeq 6000 platform 
(Genewizz, Leipzig, Germany). 

2.2 Read mapping 
Eight A. m. carnica drone pupae, collected in Slovenia, were sequenced with NovaSeq 6000. Paired-
end Illumina HiSeq 2500 reads of 29 publicly available drones (19 A. m. carnica, 10 A. m. ligustica) 
were obtained from European Nucleotide Archive under accession number PRJNA311274 (Wragg et 
al., 2016). The average depth of sequencing coverage was calculated using Qualimap tool 
(Okonechnikov et al., 2016) and in 8 sequenced A. m. carnica drones ranged from 56.90 to 73.39 with 
an average of 62.17. In publicly available sequences, coverage was lower and ranged from 8.86 to 
12.52 with an average of 10.21 in 19 samples of A. m. carnica, while in 10 samples of A. m. ligustica it 
ranged from 12.58 to 24.27 with an average of 18.73. Quality control of raw reads was performed 
using the tool Trim Galore! (https://github.com/FelixKrueger/TrimGalore). The reads were trimmed for 
adapter and low-quality bases. Trimmed reads were then mapped to the latest honeybee reference 
genome assembly (HAv3.1) using BWA-MEM (Li and Durbin, 2009) read aligner. 

2.3 Variant calling and annotation 
Variant sites across all samples were identified using haplotype-based variant detector FreeBayes 
(https://github.com/ekg/freebayes) with the settings suitable for haploid genomes. Multi-sample vcf file 
was imported to SVS Golden Helix and multi-nucleotide polymorphisms were split into the single 
nucleotide polymorphism (SNP) representation. There were 4,903,124 positions which were found 
polymorphic among individuals. Markers with a call rate <0.90 or with minimum allele frequency <0.05 
were removed. For the further analysis, 3,655,618 biallelic markers were retained. SNPs were 
annotated and filtered using SVS Golden Helix, SNP and Variation suite v8.9.0. Variants that were 
fixed for alternate alleles in A. m. carnica versus A. m. ligustica (allele frequencypop1 <0.15 and allele 
frequencypop2 >0.85) were identified.  

https://github.com/FelixKrueger/TrimGalore
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Acta fytotechn zootechn, 23, 2020(Monothematic Issue  :: Future Perspectives in Animal Production), 334-340 
http://www.acta.fapz.uniag.sk 

© Slovak University in Nitra                                                                   Faculty of Agrobiology and Food Resources 

336 

2.4 Gene ontology and biological pathways analysis 
Bioinformatics tools g:Profiler (Raudvere et al., 2019) and EnrichmentMap (Isserlin et al., 2014) plugin 
for Cytoscape (Shannon et al., 2003) were used for functional annotation and enrichment analysis of a 
filtered set of genes. Functional annotation and enrichment analysis were based on the latest 
honeybee reference genome assembly (HAv3.1). All known honeybee genes were used as a 
background gene set in the gene enrichment analysis.  
 
 
3 Results and discussion 

The search for polymorphisms in 37 whole genome sequences of drones belonging to 2 honeybee 
subpopulations, A. m. carnica and A. m. ligustica, was performed. We identified 16,239,003 
polymorphisms, however, after filtering and quality control 3,655,618 remained for further analysis. On 
average there was 1 SNP per 62 bp with the gaps that ranged from 1 to 348,017 bp in the reference 
genome. From 3,655,618 biallelic markers, 805,819 were located in intergenic regions (<5kbp 
upstream and downstream of the first or last exon, respectively), 2,604,295 markers were located in 
introns, 100,962 in untranslated regions, and 144,542 in exons, of which 18,991 represented 
missense variants. On average A. m. ligustica genotypes differed from the reference genome on 
30.9% of polymorphic sites, whereas A. m. carnica differed on 32.4% of sites. There were 989 variants 
that were fixed for alternate alleles in A. m. carnica versus A. m. ligustica. Of those, 98 missense 
SNPs within 64 genes were identified. Among SNPs fixed for different alleles in the 2 subpopulations, 
there were 9.90% missense SNPs while in the whole set of SNPs missense variants presented only 
0.52% variants (P-value <0.00001), similarly as already reported by Wallberg et al. (2014). This could 
be the evidence for natural selection diversifying both subspecies. In 47 out of 64 genes with 
missense SNPs there was one missense SNP per gene, and in 13 genes there were 2 missense 
SNPs. However, in 4 genes we identified 3 or more missense SNPs (Table 1). 

Table 1 Genes with 3 or more missense SNPs 

Gene Gene description Functional 
descriptions 

SNP position Substitution 

LOC100576610 
mitochondrial 
ribonuclease P catalytic 
subunit 

tRNA processing 

LG9:11992595 p.Val419Ile 
LG9:11992751 p.Val391Ile 
LG9:11993061 p.Glu329Lys 
LG9:11993480 p.His216Arg 
LG9:11993736 p.Ser131Gly 
LG9:11993772 p.Asp119Asn 
LG9:11993931 p.Asn66Asp 

LOC102654405 

uncharacterized/ Insect 
allergen related repeat, 
nitrile-specifier 
detoxification 

insect allergen-
related 

LG1:13288906 p.Ile12Val 
LG1:13288907 p.Ile12Thr 
LG1:13288936 p.Ile22Val 
LG1:13289205 p.Asn111Lys 
LG1:13289528 p.Ala219Val 

LOC100577452 protein brambleberry immunoglobulin-
like domain 

LG8:2410535 p.Leu639Val 
LG8:2411156 p.Leu478Ser 
LG8:2411927 p.Gln276Arg 
LG8:2412152 p.His225Tyr 

LOC410743 
glucose 
dehydrogenase [FAD, 
quinone] 

oxidation-
reduction process 

LG1:6858762 p.Ile444Leu 
LG1:6859449 p.Glu215Lys 
LG1:6859907 p.Leu62Pro 

 

The gene with 7 missense SNPs, LOC100576610, is mitochondrial ribonuclease P catalytic subunit 
(mtRNase P; Figure 1). The evolutionary rate for this gene is high (2.08) in the superfamily Apoidea 
and lower (1.69) at the level of the class Insecta according to OrthoDB v10.1 (Kriventseva et al., 
2019). 
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Figure 1  LOC100576610, mtRNase P catalytic subunit with 7 missense SNPs 
 
The mtRNase P has been identified as an important factor in RNA processing in a wide number of 
eukaryotic taxa including yeasts, plants and animals (Gissi et al., 2008). Mitochondrial DNA of the 
majority of metazoan species encodes only a tiny proportion of proteins (<5%) required for a normal 
mitochondrial function. Proteins encoded by mitochondrial DNA are components of the enzyme 
complexes which are responsible for oxidative phosphorylation. Mitochondrial encoded proteins are 
synthesized by mitochondrial translation machinery, where tRNA plays a crucial role. For a normal 
tRNA function, cleavage of polycistronic transcripts and specific posttranscriptional modifications of the 
primary transcripts at both ends are required (Jackman and Alfonzo, 2013). Recently, a specific 
RNase P (PRORP) has been identified in human mitochondria, being responsible for the 5'-end 
cleavage of pre-tRNA (Holzmann et al., 2008). In addition to PRORP, the mtRNase P complex 
contains two additional riboprotein complexes, RNase P Protein 1 and RNase Protein2, both required 
for selective methylation of tRNA (Vilardo et al., 2012). The PRORP is characterized by the short 
signal peptide, required for the import of the protein to the mitochondria, repetitive region responsible 
for RNA binding and the active domain, which is metallonuclease and is responsible for RNA cleaving. 
The analogue to the human PRORP protein is Mulder protein in Drosophila melanogaster (Sen et al., 
2016). We compared the coding region for RNase P of A. m. carnica and A. m. ligustica and identified 
7 missense mutations in the coding region suggesting that RNase P is a good candidate locus for 
molecular discrimination of both subspecies. 

Functional enrichment analysis of 64 genes with at least one missense variant revealed enrichment of 
GO terms (Figure 2) and KEGG pathways associated with energy production and conversion. 
Enriched KEGG pathways are pyruvate metabolism, fatty acid metabolism, fatty acid elongation, fatty 
acid degradation, valine, leucine and isoleucine degradation, citrate cycle and 
glycolysis/gluconeogenesis. 

 
Figure 2   Network representing enriched pathways based on GO terms. Edges represent genes in 
common between 2 pathways (nodes). The node colour corresponds to the significance of the 
geneset. Sources GO (BP, MF, CC) 

Genes in intersections of enriched biological pathways are ral GTPase-activating protein subunit beta 
(LOC412130), rab GTPase-binding effector protein 1 (LOC726432), regulator complex protein 
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LAMTOR1 (LOC725789), pyruvate dehydrogenase E1 component subunit alpha (LOC551103) and 
trifunctional enzyme subunit beta, mitochondrial (LOC551775). 

In our material we found 2 missense mutations in the RalGAPbeta subunit between A. m. carnica and 
A. m. ligustica, which due to involvement of ral GTPase in different cellular functions may contribute to 
physiological differences between the 2 subspecies. Members of the RAS-GTPase superfamily were 
found to have decreased expression in the solid honeybee larval tissues during the development 
(Chan et al., 2008). The Ral-GTPase is regulated by guanine nucleotide exchange factors and 
GTPase-activating proteins (GAP) which represent a heterodimeric complex composed of alpha and 
beta subunit (Shirakawa et al., 2009). RalGAP beta is recruited to the mitotic spindle and intercellular 
bridges in dividing cells and contributes to the spindle assembly checkpoint. Cells with RalGAPbeta 
deficiency show altered meta-to anaphase transition in humans (Personnic et al., 2014).  

The pyruvate dehydrogenase (PDH) complex is a combination of 3 catalytic components, E1 and E2, 
which generate acetyl-coenzyme A and FAD/NAD+ dependent E3, which performs redox recycling 
(Perham, 1991). The PDH catalyses the oxidative decarboxylation of pyruvate and produces acetly 
CoA, CO2 and NADH(H+). The PDH complex occupies a key position in the oxidation of glucose by 
linking gycolysis to the cycle of the tricarboxylic acid and maintains the glucose homeostasis (Patel et 
al., 2014). The PDH catalytic component E1 catalyses 2 consecutive steps, the decarboxylation of 
pyruvate and the reductive acetylation of the lipoyl groups. The gene encoding PDH belongs to the 3 
duplicated glycolysis/gluconeogenesis genes in the honeybee genome (Kunieda et al., 2006). 

In our material we found 4 point mutations in the catalytic component E1 of the honeybee PDH. The 
missense mutations could have an effect on the efficiency of the oxidative decarboxylation of pyruvate 
also in honeybee and so affect the efficiency of the energy metabolism. Since the activity of the E1 
component affects the activity of whole PDH complex, the different genetic variants of the E1 
component may play a role in adaptive traits related to energy metabolism. In some cases the 
deficiency of E1 subunit can cause the demyelination, resulting in neurological symptoms (Singhi et 
al., 2013). 

4 Conclusions 

Analysis of genomic sequences of A. m. carnica and A. m. ligustica revealed differences in the genetic 
background between the 2 subspecies which may be associated with phenotypic differences in 
metabolic rate and significant differences in insecticide sensitivity. Analysis of genetic variations in the 
protein coding part of the genome revealed polymorphisms fixed for different alleles in sampled 
populations. Among those loci, there was high proportion of missense SNPs, which might be an 
evidence for natural selection. Functional analysis of genes containing missense SNPs revealed 
pathways associated with energy metabolism, cell cycle regulation and cytokinesis.  
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