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1 Introduction

Annual ryegrass (Lolium multiflorum) is a water 
demanding species cultivated mainly for fodder or as 
a catch crop in the Czech Republic. Ryegrass growth and 
productivity is influenced mainly by drought and the 
lack of water leads to reduction of yield. One of possible 
ways how to contribute to plant resistance to drought is 
the application of microelements, especially of zinc (Zn). 
Many authors stated that zinc plays an essential role in 
alleviating drought stress (Karim et al., 2012, Ma et al., 
2017, Hussain et al., 2020). Zn application raises plant 
resistance to drought stress (Vaghar et al., 2020) and it 
contributes to the stability of photosynthetic activity 
under the lack of water (Wang et al., 2009). The role of 
zinc in plant is not completely described, nevertheless 
the positive effect of Zn to plants water management 
is mentioned by Karim et al. (2012) and Sadoogh et al. 
(2014). Zinc is vital for normal growth and development 

of plants, it is a part of proteins and an activator of many 
enzymes (Upadhyaya et al., 2013), especially of enzymes 
that involve plants growth (Havlin et al., 1999). Zinc is 
necessary for structural and catalytic components of 
proteins and enzymes, many protein sequences also 
contain Zn-binding structural domains (Steffens, 1990; 
Clarke and Berg, 1998). The level of Zn in plant has an 
impact on stomatal conductance which is reduced in case 
of zinc deficiency (Khan et al., 2004). Zinc also affects dry 
matter accumulation (Upadhyaya et al., 2013) and it plays 
an important role in a plant‘s defence against reactive 
oxygen species, whose occurrence increases under stress 
conditions (Cakmak, 2000). 

Hormonal and osmotic regulation is one of plants 
physiological defence systems against the lack of water 
(Huang et al., 2014). Drought stress signals are primarily 
perceived by root system which is exposed to reduced 
water content in soil. Many plant hormones participate 
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in root growth under drought, especially abscisic acid 
(ABA) has a special role in plant response to drought 
stress (Seo et al., 2009). Not only root reaction to drought 
are involved by ABA, but ABA also regulates stomatal 
aperture under drought stress (Stristava, 2002). ABA has 
multiple roles in plant, it involves in abscission of leaves 
and fruits and inhibits germination. This hormone also 
plays an important role in water management in plant, it 
participates in osmotic regulation (Procházka et al., 1998). 
Many authors (Ivanovic et al., 1992; Conti et al., 1994; 
Cao et al., 2000) described that concentrations of ABA 
in shoot and root tissues under water-limited conditions 
are increased, but also other abiotic stress such as salinity 
or extreme temperature lead to ABA accumulation in 
plants (Xiong et al., 2002). Accumulated ABA protects 
plants from drought stress by inducing stomata closure 
which leads to lower water losses by transpiration (Li et 
al., 2000) and improves hydraulic conductance for water 
movement from root to leaves (Zhang et al., 1995). ABA 
is also responsible for inhibition of leaf growth and due 
to this helps plants to reduce transpiration during water 
stress (Alves and Setter, 2000). Sharp (2002) mentioned 
that high ABA concentrations in water stressed plants 
correlate with growth inhibition. 

The objective of this study was to determine the effect of 
foliar application of zinc on ryegrass under water stress 
and evaluated ABA content in above-ground mass as 
a rate of drought impact on plant.

2 Material and methods
The vegetation pots experiment was established in 
the growth chambers (PlantMaster, CLF Plant Climatics 
GmbH, Germany) of the Department of Agrochemistry, 
Soil Science, Microbiology and Plant Nutrition, Faculty of 
AgriSciences, Mendel University in Brno. This experiment 
was performed twice under the same conditions and with 
the same methods used. Annual ryegrass variety Jivet 
was sown in 4th April and 14th May 2018 (1 g seeds per 
pot). Jivet is early Czech variety resistant to lodging and 
it has a huge root system which improves soil structures. 
It is ideal for cultivation in humid areas (Seed service, 
2020). Pots were filled with 6 kg of arenic chernozem soil. 
The soil was removed from upper layer of topsoil (locality 
Žabčice, South Moravia, 49.0193672 N, 16.5925011 E), it 
was subsequently dried and homogenised. The selected 
agrochemical properties of soils are shown in Table 1. 

Plants were cultivated in controlled temperature, humidity 
and light mode (12 h day length, photosynthetic photo 
flux density of 350 µmol m-2 s-1, temperature of 23/18 °C 
(day/night) and relative humidity of 55/70%). Plants were 
divided in two groups (irrigation regime) 15 days after 
sowing (18th  April and 28th May 2018), first group was 
well-watered (100% irrigation doses), and second group 
was stressed by drought (50% irrigation doses). Soil 
application of nitrogen (solution of ammonium nitrate) 
and foliar application of zinc (solution of ZnSO4 · 7 H2O) 
were done 15 days after sowing (18th April and 28th May 
2018) according to Table 2. 

Table 2 Variants and their fertilization

Variants* Nutrient doses

nitrogen (g pot-1) zinc (g l-1) **

1 N1ww 0.25 0

2 N1 + Zn1ww 0.25 1.25

3 N1 + Zn2ww 0.25 2.5

4 N2ww 0.50 0

5 N2 + Zn1ww 0.50 1.25

6 N2 + Zn2ww 0.50 2.5

7 N1ds 0.25 0

8 N1 + Zn1ds 0.25 1.25

9 N1 + Zn2ds 0.25 2.5

10 N2ds 0.50 0

11 N2 + Zn1ds 0.50 1.25

12 N2 + Zn2ds 0.50 2.5
* irrigation regime: ww – well-watered, ds – drought stress, ** 5 ml zinc 
solution per pot

All variants were conducted in four repetitions (pots). 
Sampling of above-ground mass of ryegrass was 
performed 30 days after sowing (3rd May and 12th June 
2018). Plant samples from both experiments were 
analysed equally. The content of abscisic acid was 
evaluated in homogenous sample of ryegrass above-
ground mass. The samples of 1 g plant biomass were taken 
from each variant in two repetition and homogenized by 
using mortar and pestle with sea sand and distilled water 
in 1 : 10 ratio. Homogenized samples were put into freezer 
for 14 days. After that the extraction of ABA into water was 

Table 1 Agrochemical properties of soils

pH (CaCl2) Cox Clay Silt Sand Plant-available nutrient (mg kg-1) * Available Zn 
(mg kg-1) **

P K Ca Mg

5.7 0.80% 20% 27% 53% 113 306 1766 132 0.85
* Mehlich 3 (Jones, 1990), ** Lindsay and Norvell (1978)
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done by using shaker for 12 hours in dark condition and 
temperature of 12 °C. These samples were centrifuged 
for 8 minutes at 5,000 rpm. ABA content was determined 
by RIA method (radioimmunoassay) in separated 
supernatant. This sensitive method uses radiolabeled 
molecules for measuring concentration of ABA in ng per 
g of fresh weight (FW). The main components are antigen 
MAC 252, marked radioligand 3H-ABA, ABA in analyzed 
samples and ABA standards of known concentration 
for creating calibration curve (Quarrie et al., 1988). The 
content of ABA was measured using spectrophotometer 
PACKARD 2900 TR (PerkinElmer, USA) and the results 
were determined by program Securia PACKARD. ml 

Plant samples were dried to constant weight at the 
temperature of 60 °C, dry matter weight and the contents 
of nitrogen and zinc in above-ground plant mass was 
determined. Plant samples were crushed in a grinder 
and homogenized after weighing. The resultant of 
crushed plant mass was mineralized using a mixture of 
H2SO4 and H2O2 in microwave system Milestone Ethos 1 
(Milestone, Italy) according to Zbíral et al. (2005). Method 
of Kjeldahl was used for determination of nitrogen (N) 
content, it was determined colorimetrically using Unicam 
8,625 UV/Vis spectrometer (ATI Unicam, UK). Zinc (Zn) 
content was determined by using Atomic Absorption 
Spectrophotometry (AAS) in ContrAA 700 instrument 
(Analytik Jena AG, Germany). Statistical evaluation of 
monitored parameters was performed by Statistica 12 
CZ program (StatSoft, 2013). ANOVA analysis of variance 
and follow-up tests according to Fisher (LSD test) at 95% 
(P <0.05) level of significance were used and the results 
were expressed as a mean ± standard error (SE).

3 Results and discussion
Results in Figure 1 show higher ABA content in most 
variants under drought stress in compare to well-
watered, we found significant differences between 
both irrigation regime in N1, N2, N1 + Zn1, N2 + Zn2 
variants. For example, ABA content is about 87% higher 
on well-watered variant N1 than N1 stressed by drought. 
This trend corresponds to the information that ABA 
is enhanced during water stress which is reported by 
many authors (Pospíšilová,  2003; Boominathan et al., 
2004; Bano et al., 2012; Karim and Rahman, 2015; Yang 
et al., 2018). Zinc application had an effect on decreasing 
drought stress in plants which had lower ABA content in 
biomass. Application of higher Zn dose (Zn2) seems to be 
the most suitable for better plant holding with drought 
stress, the level of ABA is getting closer to ABA content 
under well-water conditions.

The significantly highest differences between ABA 
content in drought stressed plants were found on variants 
N1ds and N1  + Zn2ds, ABA content was decreased on 
average by about 50.1% thanks to Zn application (Table 
3). Ren et al. (2017) also observed ABA content increase 
from ~2.93 ng g-1 FW (well-watered) to ~251.97 ng g-1 FW 
(soil water content reduction to 25%) in the Festuca elata 
leaves. The role of Zn in plant during drought is not fully 
understood, but it involves the elevation of water use 
efficiency (Karim et al., 2012), transpiration rate changes 
and the leaf osmotic potential (Sadoogh et al., 2014) and 
it also participates in modulating biochemical dtamages 
by antioxidant enzymes (Upadhyaya et al., 2013). We 
statistically evaluated effect of the observed factors; the 

Table 3 Content of ABA (ng g-1 FW) 

Variants Irrigation regime Content of ABA (ng g-1 FW)

1st experiment 2nd experiment average content

N1ww

well-watered

4.34ab ±0.15 4.83cd ±0.40 4.59b ±0.19

N1 + Zn1ww 5.01b ±0.27 7.83f ±0.22 6.42cd ±0.22

N1 + Zn2ww 4.76b ±0.25 5.97de ±0.80 5.37bc ±0.52

N2ww 4.82b ±0.26 5.28cd ±0.93 5.05b ±0.59

N2 + Zn1ww 2.11a ±0.06 2.25a ±0.40 2.18a ±0.17

N2 + Zn2ww 5.58b ±2.68 2.54ab ±0.41 4.06b ±1.17

N1ds

drought stress

9.15d ±0.27 8.01f ±0.60 8.58f ±0.17

N1 + Zn1ds 8.23cd ±0.13 8.69f ±0.22 8.46f ±0.14

N1 + Zn2ds 4.35ab ±0.36 4.09bc ±1.13 4.22b ±0.51

N2ds 8.10cd ±0.18 8.04f ±0.12 8.07ef ±0.15

N2 + Zn1ds 6.60bc ±0.21 7.56ef ±0.39 7.08de ±0.30

N2 + Zn2ds 4.76b ±0.20 5.75cd ±0.01 5.25bc ±0.10
means sharing the same superscript are not significantly different from each other (P <0.05) according to LSD test (each column was evaluated 
separately)
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total variability of the ABA content was affected by factor 
“irrigation regime” in the amount of 46.0%, factor “zinc 
application” in the amount of 11.3% and factor “nitrogen 
fertilization” in the amount of 8.6% in average of both 
experiments.

It is obvious from Figure 2, that dry matter weight of 
plants above-ground was decreased in dry condition 
regardless of the type of fertilization. The graded doses 
of nitrogen increased the dry matter weight. The same 
effect of higher N doses on ryegrass was described by 
Brambilla et al. (2012), Amanuel et al. (2015) and Cinar 
et al. (2020). Zinc application under drought conditions 
would have positive effect on crop yield and quality 
(Monjezi and Hassanzadehdelouei, 2013, Škarpa et al., 

2015, Ashkiani et al., 2020). In our experiment, dry matter 
weight was higher after both Zn doses in contrast to 
variants without Zn. Contrary to results of ABA content, 
where application of higher dose of zinc showed better 
plant endurance to stress, dry matter weight seems to be 
better after application of lower Zn dose (1.25 g l-1 Zn). 

The highest dry matter weight from well-watered 
variants was found on variant N2 + Zn1. The same type 
of fertilization showed the highest dry matter weight 
also in plants under drought stress (Table  4). The dry 
matter weight of variant N2 + Zn1 was about 5.6% higher 
(well-watered) and 10% higher (drought stress) than 
dry matter weight of variants N2. Positive effect of Zn 
application on ryegrass dry matter production was also 

Figure 1 Effect of irrigation regime on average ABA 
content in ryegrass biomass 
statistically evaluated within irrigation regime (well-
watered, drought stress), same letters are not 
significantly different (P <0.05) according to LSD test

Figure 2 Effect of irrigation regime on dry matter weight 
of ryegrass above-ground biomass
statistically evaluated within irrigation regime (well-
watered, drought stress), same letters are not 
significantly different (P <0.05) according to LSD test

Table 4 Dry matter weight (g pot-1) of above-ground part of ryegrass

Variants Irrigation regime Dry matter weight (g pot-1)

1st experiment 2nd experiment average content

N1ww

well-watered

9.76cd ±0.39 9.86bc ±0.29 9.81b ±0.28

N1 + Zn1ww 10.59de ±0.32 10.10bc ±0.66 10.35b ±0.43

N1 + Zn2ww 9.68c ±0.24 9.89bc ±0.47 9.79b ±0.18

N2ww 10.59de ±0.20 12.42de ±1.03 11.51c ±0.52

N2 + Zn1ww 11.29e ±0.20 13.00e ±1.19 12.15c ±0.62

N2 + Zn2ww 11.18e ±0.30 12.84e ±0.16 12.01c ±0.09

N1ds

drought stress

6.32a ±0.42 8.03a ±0.59 7.17a ±0.47

N1 + Zn1ds 7.09a ±0.05 8.94ab ±0.35 8.02a ±0.19

N1 + Zn2ds 6.32a ±0.52 9.21ab ±0.47 7.76a ±0.47

N2ds 8.13b ±0.28 10.68bcd ±0.15 9.40b ±0.13

N2 + Zn1ds 8.50b ±0.23 12.19de ±0.58 10.34b ±0.22

N2 + Zn2ds 8.57b ±0.38 11.50cde ±0.72 10.03b ±0.47
means sharing the same superscript are not significantly different from each other (P <0.05) according to LSD test (each column was evaluated 
separately

ng
 g

-1
 fW

g
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described by Kremper and Seres (2010). Grzebisz et al. 
(2008) observed the same effect on maize, Mathpal et al. 
(2015) on wheat and Poblaciones et al. (2017) on Lolium 
rigidum and Trifolium subterraneum.

Zinc treatment affected its content in annual ryegrass 
(Lolium multiflorum), which was significantly enhanced 
on all variants with microelement application (Table 
5). Bowen (1979) states that the range of normal Zn 
concentration in plants growing on unpolluted soil 
is 20–400 mg kg-1 of dry weight. We determined higher 
Zn content on variants under drought stress in compare 
to well-watered variants, the similar trend was observed 
for maize (Wang and Jing 2007), sorghum (Dimkpa et al., 
2019) and wheat (Velu et al., 2016).

4 Conclusions
According to ABA content in plants as drought stress 
marker, foliar application of zinc improved annual 
ryegrass (Lolium multiflorum) reaction to drought stress. 
The combination of lower N dose with higher Zn dose 
(variant N1 + Zn2) appears as the most suitable for 
supporting the ryegrass in dealing with drought stress. 
Foliar Zn application contributed to increase of dry 
matter weight of plant regardless to drought stress, the 
highest dry matter weight was found on variant fertilized 
with higher N dose with combination of lower Zn dose 
(variant N2 + Zn1). 
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