Distribution of Small Mammals (Eulipotyphla, Rodentia) under Organicand Conventional Farming Conditions

Authors

  • Vladimír Langraf Constantine the Philosopher University in Nitra, Faculty of Natural Sciences and Informatics, Department of Zoology and Anthropology, Slovakia
  • Karolína Kolláriková Constantine the Philosopher University in Nitra, Faculty of Natural Sciences and Informatics, Department of Zoology and Anthropology, Slovakia
  • Kornélia Petrovičová Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Slovakia

Keywords:

Agroecosystems; , management crops, small mammals, diversity, Slovakia

Abstract

Agricultural land is important for the biodiversity of small mammals, their modifications in the spatial structure also indicates the quality of the agroecosystem. Different methods of land management (organic and conventional) affects their heterogeneity, which also affects crop yield. The goal of our research was to determine changes in the spatial structure of small mammals under conditions of organic and conventional farming. Crops grown in organic farming were Pisum sativum, Triticum spelta, Clover grass mix and Zea mays, Triticum aestivum and Brassica napus in conventional farming. Between the years 2019 and 2023, with the help of pitfall traps, we confirmed 6 species and 95 small mammal individuals in organic farming; 5 species and 100 small mammal individuals in conventional farming. Multivariate analysis (PCA) confirmed the preference of small mammals for organic farming crops. A significant influence of temperature and moisture on the spatial dispersion of small mammals was found using redundancy analysis (RDA). One more species in each type of management was predicted using the rarefaction curves. From the results of our research, we can say that small mammals preferred the conditions of organic farming, which points to better topical and tropical conditions for them in this type of farming.

References

Alain, B., Gilles, P., & Yannick, D. (2006). Factors driving small rodents assemblages from field boundaries in agricultural landscapes of western France. Landscape Ecology, 21(3), 449–461. https://doi.org/10.1007/s10980-005-4118-6

Baláž, I., Tulis, F., Veselovský, T., Klimant, F., & Augustiničová, G. (2013). Rodents and insectivores of Slovakia (in Slovak). Nitra, UKF.

Balčiauskas, L., Balčiauskiené, L., & Stirké, V. (2019). Mow the grass at the mouse’s peril: Diversity of small mammals in commercial fruit farms. Animals, 9(6), 1–17. https://doi.org/10.3390/ani9060334

Baldi, G., & Paruelo, J. M. (2008). Land-use and land cover dynamics in South American temperate grasslands. Ecology and Society, 13(2), 1–17. https://doi.org/10.5751/ES-02481-130206

Bashlykova, L. A., & Korolev, A. N. (2014). Records of common (Microtus arvalis) and Eastern European (Microtus rossiaemeridionalis) voles in the central part of the Komi Republic. Zoologicheskii Zhurnal, 93(11), 1375–1380.

Batary, P., Báldi, A., Kleijn, D., & Tscharntke, T. (2011). Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proceedings of the Royal Society B, 278(1713), 1894–1902. https://doi.org/10.1098/rspb.2010.1923

Benedek, A., & Sîrbu, L. (2018). Responses of small mammal communities to environment and agriculture in a rural mosaic landscape. Mammalian Biology, 90, 55–65. https://doi.org/10.1016/j.mambio.2018.02.008

Bengtsson, J., Ahnstrom, J., & Christin Weibull, A. (2005). The effects of organic agriculture on biodiversity and abundance: a meta-analysis. Journal of Applied Ecology, 42(2), 261–269. https://doi.org/10.1111/j.1365-2664.2005.01005.x

Briones, M. J. I., & Schmidt, O. (2017). Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. Global Change Biology, 23(10), 4396–4419. https://doi.org/10.1111/gcb.13744

Fischer, C., Thies, C., & Tscharntke, T. (2011). Small mammals in agricultural landscapes: opposing responses to farming practices and landscape complexity. Biological Conservation, 144(3), 1130–1136. https://doi.org/10.1016/j.biocon.2010.12.032

Fischer, C., & Schröder, B. (2014). Predicting spatial and temporal habitat use of rodents in a highly intensive agricultural area. Agriculture Ecosystems & Environment, 189, 145–153. https://doi.org/10.1016/j.agee.2014.03.039

Crowder, D. W., Northfield, D. T., Strand, R. M., & Snyder, E. W. (2010). Organic agriculture promotes evenness and natural pest control. Nature, 466(7302), 109–112. https://doi.org/10.1038/nature09183

Gabriel, D., Sait, M. S., Kunin, E. W., & Benton, G. T. (2013). Food production vs. biodiversity: comparing organic and conventional agriculture. Journal of Applied Ecology, 50, 355–364. https://doi.org/10.1111/1365-2664.12035

Gomez, M. D., Goijman, P. A., Coda, J., Serafini, V., & Priotto, J. (2018). Small mammal responses to farming practices in Central Argentinian agroecosystems: The use of hierarchical occupancy models. Austral Ecology, 43(7), 828–838. https://doi.org/10.1111/aec.12625

Jurišič, A., Kranik, N., Ivanovič, I., Vukovič, S., & Potkonjak, A. (2021). Rodents and their control in orchards. Biljni Lekar, 49(5), 613-625. https://doi.org/10.5937/BiljLek2105613J

Coda, J., Gomez, D. M., Steinmann, R. A., & Priotto, W. J. (2015). Small mammals in farmlands of Argentina: Responses to organic and conventional farming. Agriculture, Ecosystems & Environment, 211, 17–23. https://doi.org/10.1016/j.agee.2015.05.007

Khlyap, L. A., & Warshavsky, A. A. (2010). Synanthropic and agrophilic rodents as invasive alien mammals. Russian Journal of Biological Invasions, 1(4), 301–312. https://doi.org/10.1134/S2075111710040089

Malygin, V. M., Baskevich, I. M., & Khlyap, L. (2020). Invasions of the common vole sibling species. Russian Journal of Biological Invasions, 11(1), 47–65. https://doi.org/10.1134/S2075111720010087

Martínez, J. J., Millien, V., Simone, I., & Priotto, W. J. (2014). Ecological preference between generalist and specialist rodents: Spatial and environmental correlates of phenotypic variation. Biological Journal of the Linnean Society, 112(1), 180–203. https://doi.org/10.1111/bij.12268

Michel, N., Bruel, F., & Butet, A. (2006). How does landscape use influence small mammal diversity, abundance and biomass in hedgerow networks of farming landscapes? Acta Oecologica, 30(1), 11–20. https://doi.org/10.1016/j.actao.2005.12.006

Montgomery, D. R. (2007). Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences, 104(33), 13268–13272. https://doi.org/10.1073/pnas.061150810

Sharma, S. (2011). Assessment of soil quality using microarthropod communities under different land system: A case study in the mid-hills of central Nepal. Journal of Life Sciences, 5(1), 66–73.

Simão, F. C. P., Carretero, A. M., & Amaral, A. J. M. (2015). Composition and seasonal variation of epigeic arthropods in field margins of NW Portugal. Turkish Journal of Zoology, 39(3), 404–411. https://doi.org/10.3906/zoo-1401-69

Simone, I., Cagnacci, F., Provensal, C. M., & Polop, J. (2010). Environmental determinants of the small mammal assemblage in an agroecosystem of central Argentina: The role of Calomys musculinus. Mammalian Biology, 75, 496–509. https://doi.org/10.1016/j.mambio.2009.12.002

Stirkė, V., Balčiauskas, L., & Balčiauskiené, L. (2022). Spatiotemporal variation of small mammal communities in commercial orchards across the small country. Agriculture, 12(5), 1–12. https://doi.org/10.3390/agriculture12050632

Ter Braak, C. J. F., & Šmilauer, P. (2012). Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power, Ithaca, New York, USA.

Tscharntke, T., Klein, A., & Kruess, A. (2005). Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecology Letters, 8(8), 857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x

Tscharntke, T., Clough, Y., Wanger, C. T., Jackson, E. L., Motzke, N. K. I., Perfecto, I., Vandermeer, J., & Whitbread, M. A. (2012). Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 151(1), 53–59. https://doi.org/10.1016/j.biocon.2012.01.068

Tschumi, M., Ekroos, J., Hjort, K.C., Smith, G.H., & Brikhofer, K. (2018). Rodents, not birds, dominate predation-related ecosystem services and disservices in vertebrate communities of agricultural landscapes. Oecologia, 188(3), 863–873.https://doi.org/10.1007/s00442-018-4242-z

Downloads

Published

2025-03-31

Issue

Section

Animal Science