Methodological Advances in the Analysis of Genetic Population Structure: Implications for Biodiversity Conservation

Authors

  • Karolína Pálešová Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Institute of Nutrition and Genomic, Nitra, Slovakia
  • Nina Moravčíková Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Institute of Nutrition and Genomics https://orcid.org/0000-0003-1898-8718
  • Radovan Kasarda Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Institute of Nutrition and Genomics https://orcid.org/0000-0002-2723-3192

Keywords:

population structure, biodiversity, genomics, conservation

Abstract

This paper provides an overview of advances in the analysis of the genetic structure of populations, focusing on the evolution of statistical approaches and their applications in conservation genetics. Understanding genetic relationships among populations is crucial for assessing evolutionary processes such as gene flow, genetic drift, and selection, which fundamentally affect genetic diversity over time. Traditionally, studies relied on a limited number of genetic markers and summary statistics; however, the advent of high-throughput genomic technologies has dramatically enhanced both the resolution and accuracy of these analyses. Whole-genome sequencing and dense SNP arrays now provide unprecedented insights into neutral and adaptive variations, enabling fine-scale detection of population subdivisions and historical demographic trends. In parallel, the development of advanced statistical models has refined genetic analyses, allowing for more precise estimations of genetic differentiation, admixture, and ancestral relationships. These innovations are particularly valuable in conservation genetics, where robust assessments are essential for optimising strategies to maintain genetic diversity, identify populations at risk, and mitigate the effects of inbreeding and effective population size decline. Despite these improvements, challenges remain, including computational demands and the need to account for complex demographic histories and selection pressures. Given the continuous evolution of analytical techniques, selecting appropriate methods tailored to specific research questions is critical for producing reliable insights into population structure and effectively guiding conservation efforts. In conclusion, the continuous advancement of genomic analysis tools enhances the ability to study population dynamics in greater detail and supports more effective conservation planning.

References

Al-Breiki, H., Kennington, W. J., Brown, C., Burt, J. A., & DiBattista, J. D. (2018). Genome-wide SNP data reveal cryptic population structure in the scalloped spiny lobster (Panulirus homarus) along the Omani coastline. BMC Genomics, 19, 690. https://doi.org/10.1186/s12864-018-5044-8

Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19(9), 1655–1664. https://doi.org/10.1101/gr.094052.109

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633–2635. https://doi.org/10.1093/bioinformatics/btm308

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324

Browning, B. L., & Browning, S. R. (2013). Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics, 194(2), 459–471. https://doi.org/10.1534/genetics.113.150029

Browning, S. R., & Browning, B. L. (2012). Identity by descent between distant relatives: Detection and applications. Annual Review of Genetics, 46, 617–633. https://doi.org/10.1146/annurev-genet-110711-155534

Browning, S. R., & Thompson, E. A. (2012). Detecting rare variant associations by identity-by-descent mapping in case-control studies. Genetics, 190(4), 1521–1531. https://doi.org/10.1534/genetics.111.136937

Bublyk, O., Andreev, I., Parnikoza, I., & Kunakh, V. (2020). Population genetic structure of Iris pumila L. in Ukraine: Effects of habitat fragmentation. Acta Biologica Cracoviensia Series Botanica, 62(1), 51–61. https://doi.org/10.24425/abcsb.2020.131665

Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L. T., Sharp, K., Motyer, A., Vukcevic, D., Delaneau, O., O‘Connell, J., Cortes, A., Welsh, S., Young, A., Effingham, M., McVean, G., Leslie, S., Allen, N., Donnelly, P., & Marchini, J. (2018). The UK Biobank resource with deep phenotyping and genomic data. Nature, 562(7726), 203–209. https://doi.org/10.1038/s41586-018-0579-z

Cavalli-Sforza, L. L., & Edwards, A. W. F. (1967). Phylogenetic analysis: models and estimation procedures. American Journal of Human Genetics, 19(3 Pt 1), 233–257.

Ceballos, G., Ehrlich, P. R., & Dirzo, R. (2017). Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences, 114(30), E6089–E6096. https://doi.org/10.1073/pnas.1704949114

Chakraborty, S. (2010). Comparative study of various genetic distance measures between populations for the ABO gene. Nature and Science of Sleep, 2(4). https://doi.org/10.15835/nsb245447

Chang, C. C., Chow, C. C., Tellier, L. C. A. M., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience, 4, 7. https://doi.org/10.1186/s13742-015-0047-8

Chhotaray, S., Panigrahi, M., Pal, D., Ahmad, S. F., Bhushan, D., Gaur, G. K., Mishra, B. P., & Singh, R. K. (2019). Ancestry informative markers derived from discriminant analysis of principal components provide important insights into the composition of crossbred cattle. Genomics. https://doi.org/10.1016/j.ygeno.2019.10.008

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., & Durbin, R. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156–2158. https://doi.org/10.1093/bioinformatics/btr330

Ding, X., Dong, X., McGough, O., Shen, C., Ulichney, A., Xu, R., Swartworth, W., Chi, J. T., & Needell, D. (2022). Population-based hierarchical non-negative matrix factorization for survey data. arXiv. https://doi.org/10.48550/arXiv.2209.04968

Dominguez Mantes, A., Mas Montserrat, D., Bustamante, C. D., Giró-i-Nieto, X., & Ioannidis, A. G. (2023). Neural ADMIXTURE for rapid genomic clustering. Nature Computational Science, 3, 621–629. https://doi.org/10.1038/s43588-023-00482-7

Edwards, A. W. F. (1971). Distances between populations on the basis of gene frequencies. Biometrics, 27(4), 873–881.

Elhaik, E. (2022). Principal component analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated. Scientific Reports, 12, Article 14683. https://doi.org/10.1038/s41598-022-14395-4

Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

Faith, J. J., Hayete, B., Thaden, J. T., Mogno, I., Wierzbowski, J., Cottarel, G., et al. (2007). Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biology, 5(1), e8. https://doi.org/10.1371/journal.pbio.0050008

Fan, C.-C., Pecchioni, N., & Chen, L.-Q. (2008). Genetic structure and proposed conservation strategy for natural populations of Calycanthus chinensis Cheng et S.Y. Chang (Calycanthaceae). Canadian Journal of Plant Science, 88(1), 179–186. https://doi.org/10.4141/CJPS07015

Frankham, R., Ballou, J. D., & Briscoe, D. A. (2018). Conservation genetics.

Funk, W. C., McKay, J. K., Hohenlohe, P. A., & Allendorf, F. W. (2012). Harnessing genomics for delineating conservation units. Trends in Ecology & Evolution, 27(9), 489–496. https://doi.org/10.1016/j.tree.2012.05.012

Gilmour, A. R., Gogel, B. J., Cullis, B. R., & Thompson, R. (2009). ASReml user guide release 3.0. VSN International Ltd.

Gopalan, S., Smith, S. P., Korunes, K., Hamid, I., Ramachandran, S., & Goldberg, A. (2022). Human genetic admixture through the lens of population genomics. Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1852). https://doi.org/10.1098/rstb.2020.0410

Gouy, A., & Zieger, M. (2025). STRAF 2: New features and improvements of the STR population data analysis software. Forensic Science International: Genetics, 76, 103207. https://doi.org/10.1016/j.fsigen.2024.103207

Guillot, G., & Orlando, L. (2013). Population Structure.

Guo, X., Qian, Y., Shi, H., Yang, W., & Zhou, N. (2023). Semiparametric efficient estimation of genetic relatedness with machine learning methods. arXiv preprint arXiv:2304.01849. https://doi.org/10.48550/arXiv.2304.01849

Gusev, A., Lowe, J. K., Stoffel, M., Daly, M. J., Altshuler, D., Breslow, J. L., Friedman, J. M., & Pe‘er, I. (2009). Whole population, genome-wide mapping of hidden relatedness. Genome Research, 19(2), 318–326. https://doi.org/10.1101/gr.081398.108

Hassanpour, A., Geibel, J., Simianer, H., & Pook, T. (2023). Optimization of breeding program design through stochastic simulation with kernel regression. G3: Genes|Genomes|Genetics, 13(12). https://doi.org/10.1093/g3journal/jkad217

Haughton, D., Legrand, P., & Woolford, S. (2009). Review of three latent class cluster analysis packages: Latent Gold, poLCA, and mclust. The American Statistician, 63, 81–91. http://dx.doi.org/10.1198/tast.2009.0016

Hauser, S. S., Athrey, G., & Leberg, P. L. (2021). Waste not, want not: Microsatellites remain an economical and informative technology for conservation genetics. Ecology and Evolution, 11(22), 15800–15814. https://doi.org/10.1002/ece3.8250

Hedgecock, D., Barber, P. H., & Edmands, S. (2007). Genetic approaches to measuring connectivity. Oceanography, 20(3), 70–79. https://tos.org/oceanography/assets/docs/20-3_hedgecock.pdf

Henden, L., Lee, S., Mueller, I., Barry, A., & Bahlo, M. (2018). Identity-by-descent analyses for measuring population dynamics and selection in recombining pathogens. PLoS Genetics, 14(5), e1007279. https://doi.org/10.1371/journal.pgen.1007279

Herbers, J. M. (2010). Evolution: Fundamentals. In Encyclopedia of Animal Behavior (pp. 670–678). Elsevier. https://doi.org/10.1016/B978-0-08-045337-8.00110-8

Hohenlohe, P. A., Funk, W. C., & Rajora, O. P. (2020). Population genomics for wildlife conservation and management. Molecular Ecology, 30(1), 62–82. https://doi.org/10.1111/mec.15720

Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14), 1801–1806. https://doi.org/10.1093/bioinformatics/btm233

Jombart, T. (2008). adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403–1405. https://doi.org/10.1093/bioinformatics/btn129

Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genetics, 11. https://doi.org/10.1186/1471-2156-11-94

Kamvar, Z. N., Tabima, J. F., & Grünwald, N. J. (2014). Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ, 2, e281. https://doi.org/10.7717/peerj.281

Karamizadeh, S., Abdullah, S. M., Manaf, A. A., Zamani, M., & Hooman, A. (2013). An overview of principal component analysis. Journal of Signal and Information Processing, 4(3B), 173–175. https://doi.org/10.4236/jsip.2013.43B031

Kasarda, R., Jamborová, Ľ., & Moravčíková, N. (2020). Genetic diversity and production potential of animal food resources. Acta Fytotechnica et Zootechnica, 23(2), 102–108. https://doi.org/10.15414/afz.2020.23.02.102-108

Kasarda, R., Moravčíková, N., Mészáros, G., Simčič, M., & Zaborski, D. (2023). Classification of cattle breeds based on the random forest approach. Livestock Science, 267, 105143. https://doi.org/10.1016/j.livsci.2022.105143

Korunes, K. L., & Goldberg, A. (2021). Human genetic admixture. PLOS Genetics, 17(3), e1009374. https://doi.org/10.1371/journal.pgen.1009374

Kukučková, V., Kasarda, R., Žitný, J., & Moravčíková, N. (2018). Genetic markers and biostatistical methods as appropriate tools to preserve genetic resources. AGROFOR International Journal, 3(2), 41–48. https://doi.org/10.7251/AGRENG1802041

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096

Lawson, D. J., van Dorp, L., & Falush, D. (2018). A tutorial on how not to over-interpret Structure and Admixture bar plots. Nature Communications, 9, Article 3258. https://doi.org/10.1038/s41467-018-05257-7

Leaché, A. D., & Oaks, J. R. (2017). The utility of single nucleotide polymorphism (SNP) data in phylogenetics. Annual Review of Ecology, Evolution, and Systematics, 48, 69–84. https://doi.org/10.1146/annurev-ecolsys-110316-022645

Lehocká, K., Kasarda, R., Olšanská, B., & Moravčíková, N. (2020). Assessment of genetic drift and migration in six cattle breeds. Acta Fytotechnica et Zootechnica, 23(Monothematic Issue: Future Perspectives in Animal Production), 46–51. https://doi.org/10.15414/afz.2020.23.mi-fpap.46-51

Li, Y., Kaur, S., Pembleton, L. W., Valipour-Kahrood, H., Rosewarne, G. M., & Daetwyler, H. D. (2022). Strategies of preserving genetic diversity while maximizing genetic response from implementing genomic selection in pulse breeding programs. Theoretical and Applied Genetics, 135(6), 1813–1828. https://doi.org/10.1007/s00122-022-04071-6

Li, Z., Zalucki, M. P., Yonow, T., Kriticos, D. J., Bao, H., Chen, H., Hu, Z., Feng, X., & Furlong, M. J. (2015). Population dynamics and management of diamondback moth (Plutella xylostella) in China: The relative contributions of climate, natural enemies, and cropping patterns. Bulletin of Entomological Research, 106(2), 197–214. https://doi.org/10.1017/S0007485315000853

Lichtenstein, F., Antoneli, F., & Briones, M. R. S. (2015). MIA: Mutual Information Analyzer, a graphic user interface program that calculates entropy, vertical and horizontal mutual information of molecular sequence sets. BMC Bioinformatics, 16, 409. https://doi.org/10.1186/s12859-015-0837-0

Linzer, D. A., & Lewis, J. B. (2011). poLCA: An R package for polytomous variable latent class analysis. Journal of Statistical Software, 42(10), 1–29. https://www.jstatsoft.org/index.php/jss/article/view/v042i10

Makgahlela, M. L., Strandén, I., Nielsen, U. S., Sillanpää, M. J., & Mäntysaari, E. A. (2014). Using the unified relationship matrix adjusted by breed-wise allele frequencies in genomic evaluation of a multibreed population. Journal of Dairy Science, 97(2), 1117–1127. https://doi.org/10.3168/jds.2013-7167

Makrem, A., Najeh, B. F., Laarbi, K. M., & Mohamed, B. (2006). Genetic diversity in Tunisian Ceratonia siliqua L. (Caesalpinioideae) natural populations. Genetic Resources and Crop Evolution, 53, 1501–1511. https://doi.org/10.1007/s10722-005-7761-5

Meirmans, P. G., Liu, S., & Van Tienderen, P. H. (2018). The analysis of polyploid genetic data. Journal of Heredity, 109(3), 283–296. https://doi.org/10.1093/jhered/esy006

Meuwissen, T. H. E., Sonesson, A. K., Gebregiwergis, G., & Woolliams, J. A. (2020). Management of genetic diversity in the era of genomics. Frontiers in Genetics, 11. https://doi.org/10.3389/fgene.2020.00880

Miller, J. M., Cullingham, C. I., & Peery, R. M. (2020). The influence of a priori grouping on inference of genetic clusters: Simulation study and literature review of the DAPC method. Heredity, 125, 269–280. https://doi.org/10.1038/s41437-020-0304-1

Moorjani, P., & Hellenthal, G. (2023). Methods for assessing population relationships and history using genomic data. Annual Review of Genomics and Human Genetics, 24, 305–332. https://doi.org/10.1146/annurev-genom-111422-025117

Moravčíková, N., & Kasarda, R. (2020). Use of high-density SNP analyses to develop a long-term strategy for conventional populations to prevent loss of diversity – Review. Acta Fytotechnica et Zootechnica, 23(4), 236–240. https://doi.org/10.15414/afz.2020.23.04.236-240

Morrison, D. A. (2010). Using data-display networks for exploratory data analysis in phylogenetic studies. Molecular Biology and Evolution, 27(5), 1044–1057. https://doi.org/10.1093/molbev/msp309

Moura, A., & Eurico, V. (2010). Investigating the relative influence of genetic drift and natural selection in shaping patterns of population structure in Delphinids (Delphinus delphis; Tursiops spp.), Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/755

Nagai, S., Lian, C., Yamaguchi, S., Hamaguchi, M., Matsuyama, Y., Itakura, S., Shimada, H., Kaga, S., Yamauchi, H., Sonda, Y., Nishikawa, T., Kim, C.-H., & Hogetsu, T. (2007). Microsatellite markers reveal population genetic structure of the toxic dinoflagellate Alexandrium tamarense (Dinophyceae) in Japanese coastal waters. Journal of Phycology, 43(1), 43–54. https://doi.org/10.1111/j.1529-8817.2006.00304.x

Nam, B. E., Nam, J. M., & Kim, J. G. (2016). Effects of habitat differences on the genetic diversity of Persicaria thunbergii. Journal of Ecology and Environment, 40(11). https://doi.org/10.1186/s41610-016-0012-1

Nei, M. (1972). Genetic distance between populations. The American Naturalist, 106(949), 283–292. https://doi.org/10.1086/282771

Nei, M., & Kumar, S. (2000). Molecular Evolution and Phylogenetics. Oxford University Press.

Neuditschko, M., Khatkar, M. S., & Raadsma, H. W. (2012). NetView: A high-definition network-visualization approach to detect fine-scale population structures from genome-wide patterns of variation. PLoS ONE, 7(10), e48375. https://doi.org/10.1371/journal.pone.0048375

Oberski, D. (2016). Mixture models: Latent profile and latent class analysis (pp. 275–287). Springer Nature.

Palamara, P. F., Lencz, T., Darvasi, A., & Pe’er, I. (2012). Length distributions of identity by descent reveal fine-scale demographic history. The American Journal of Human Genetics, 91(5), 809–822. https://doi.org/10.1016/j.ajhg.2012.08.030

Patterson, N., Price, A. L., & Reich, D. (2006). Population structure and eigenanalysis. PLoS Genetics, 2(12). https://doi.org/10.1371/journal.pgen.0020190

Peakall, R., & Smouse, P. E. (2006). GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

Pedersen, L. D., Sørensen, C., Henryon, M. M., Mahyari, S. A., & Berg, P. (2009). ADAM: A computer program to simulate selective breeding schemes for animals. Livestock Science, 121(2), 343–344. https://doi.org/10.1016/j.livsci.2008.06.028

Pembleton, L. W., Cogan, N. O. I., & Forster, J. W. (2013). StAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Molecular Ecology Resources, 13(5), 946–952. https://doi.org/10.1111/1755-0998.12129

Peugh, J., & Fan, X. (2013). Modeling unobserved heterogeneity using latent profile analysis: A Monte Carlo simulation. Structural Equation Modeling: A Multidisciplinary Journal, 20(4), 616–639. https://doi.org/10.1080/10705511.2013.824780

Pickrell, J. K., & Pritchard, J. K. (2012). Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genetics, 8(11). https://doi.org/10.1371/journal.pgen.1002967

Porta, B., Fernández, P., Galván, G., & Condón, F. (2020). Gametes simulator: A multilocus genotype simulator to analyze genetic structure in outbreeding diploid species. Crop Breeding and Applied Biotechnology, 20(1). https://doi.org/10.1590/1984-70332020v20n1s9

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959. https://doi.org/10.1093/genetics/155.2.945

Putman, A. I., & Carbone, I. (2014). Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecology and Evolution, 4(22), 4399–4428. https://doi.org/10.1002/ece3.1305

Qin, X., Lock, T. R., & Kallenbach, R. L. (2022). DA: Population structure inference using discriminant analysis. Methods in Ecology and Evolution, 13(2), 485–499. https://doi.org/10.1111/2041-210X.13748

Raj, A., Stephens, M., & Pritchard, J. K. (2014). fastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics, 197(2), 573–589. https://doi.org/10.1534/genetics.114.164350

Reynolds, J., Weir, B. S., & Cockerham, C. C. (1983). Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics, 105(3), 767–779.

Rogers, J. S. (1972). Measures of genetic similarity and genetic distance. Studies in Genetics VII, University of Texas Publication 7213 (pp. 145–153).

Rosel, P. E., Hancock-Hanser, B. L., Archer, F. I., Robertson, K. M., Martien, K. K., Leslie, M. S., Berta, A., Cipriano, F., Viricel, A., Viaud-Martinez, K. A., & Taylor, B. L. (2017). Examining metrics and magnitudes of molecular genetic differentiation used to delimit cetacean subspecies based on mitochondrial DNA control region sequences. Marine Mammal Science, 33(S1), 76–100. https://doi.org/10.1111/mms.12410

Rosenberg, N. A. (2004). DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4(1), 137–138. https://doi.org/10.1046/j.1471-8286.2003.00566.x

Rousset, F. (2008). GENEPOP‘007: A complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources, 8(1), 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Sekino, M., & Hara, M. (2001). Application of Microsatellite Markers to Population Genetics Studies in Aquatic Organisms. Aquatic Living Resources, 14(4), 213–218.

Serneels, S., & Verdonck, T. (2008). Principal component analysis for data containing outliers and missing elements. Computational Statistics & Data Analysis, 52(3), 1712–1727. https://doi.org/10.1016/j.csda.2007.05.024

Sinha, P., Dincer, A., Virgil, D., Xu, G., Poh, Y.-P., & Jensen, J. D. (2011). On detecting selective sweeps using single genomes. Frontiers in Genetics, 2, 85. https://doi.org/10.3389/fgene.2011.00085

Smith, C. C. R., Patterson, G., Ralph, P. L., & Kern, A. D. (2024). Estimation of spatial demographic maps from polymorphism data using a neural network. bioRxiv. https://doi.org/10.1101/2024.03.15.585300

Solovieva, E., & Sakai, H. (2023). PSReliP: An integrated pipeline for analysis and visualization of population structure and relatedness based on genome-wide genetic variant data. BMC Bioinformatics, 24, 135. https://doi.org/10.1186/s12859-023-05169-4

Steinig, E. J., Neuditschko, M., Khatkar, M. S., Raadsma, H. W., & Zenger, K. R. (2016). NetViewP: A network visualization tool to unravel complex population structure using genome-wide SNPs. Molecular Ecology Resources, 16(1), 216–227. https://doi.org/10.1111/1755-0998.12442

Su, G., Christensen, O. F., Ostersen, T., Henryon, M., & Lund, M. S. (2012). Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers. PLoS ONE, 7(9). https://doi.org/10.1371/journal.pone.0045293

Subramanian, S. (2022). The difference in the proportions of deleterious variations within and between populations influences the estimation of FST. Genes, 13(2), 194. https://doi.org/10.3390/genes13020194

Sul, J. H., Martin, L. S., & Eskin, E. (2018). Population structure in genetic studies: Confounding factors and mixed models. PLoS Genetics, 14(12). https://doi.org/10.1371/journal.pgen.1007309

Takezaki, N., & Nei, M. (1996). Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics, 144(1), 389–399. https://doi.org/10.1093/genetics/144.1.389

Tang, H., Peng, J., Wang, P., & Risch, N. J. (2005). Estimation of individual admixture: Analytical and study design considerations. Genetic Epidemiology, 28(4), 289–301. https://doi.org/10.1002/gepi.20064

Thia, J. A. (2023). Guidelines for standardizing the application of discriminant analysis of principal components to genotype data. Molecular Ecology Resources, 23(3), 523–538. https://doi.org/10.1111/1755-0998.13706

Thompson, E. A. (2013). Identity by descent: Variation in meiosis, across genomes, and in populations. Genetics, 194(2), 301–326. https://doi.org/10.1534/genetics.112.148825

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science, 91(11), 4414–4423. https://doi.org/10.3168/jds.2007-0980

Veerkamp, R. F., Mulder, H. A., Thompson, R., & Calus, M. P. L. (2011). Genomic and pedigree-based genetic parameters for scarcely recorded traits when some animals are genotyped. Journal of Dairy Science, 94(8), 4189–4197. https://doi.org/10.3168/jds.2011-4223

Villanueva, B., Fernández, A., Saura, M., Caballero, A., Fernández, J., Morales-González, E., Toro, M. A., & Pong-Wong, R. (2021). The value of genomic relationship matrices to estimate levels of inbreeding. Genetics Selection Evolution, 53, 42. https://doi.org/10.1186/s12711-021-00647-5

Villaverde, A. F., Ross, J., Morán, F., & Banga, J. R. (2014). MIDER: Network inference with mutual information distance and entropy reduction. PLoS ONE, 9(5). https://doi.org/10.1371/journal.pone.0096732

vonHoldt, B. M., Pollinger, J. P., Earl, D. A., Knowles, J. C., Boyko, A. R., Parker, H., Geffen, E., Pilot, M., Jedrzejewski, W., Jedrzejewska, B., Sidorovich, V., Greco, C., & Wayne, R. K. (2011). A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Research, 21(8), 1294–1305. https://doi.org/10.1101/gr.116301.110

Wang, J. (2022). Fast and accurate population admixture inference from genotype data from a few microsatellites to millions of SNPs. Heredity, 129, 79–92. https://doi.org/10.1038/s41437-022-00535-z

Wang, J. (2024). PopCluster: A Population Genetics Model-Based Toolset for Simulating, Inferring and Visualising Individual Admixture and Population Structure. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.14058

Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38(6), 1358–1370. https://doi.org/10.1111/j.1558-5646.1984.tb05657.x

Wellmann, R. Optimum contribution selection for animal breeding and conservation: the R package optiSel. BMC Bioinformatics, 20, 25. https://doi.org/10.1186/s12859-018-2450-5

Whitlock, M. C., & Guillaume, F. (2009). Testing for spatially divergent selection: Comparing QST to FST. Genetics, 183(3), 1055–1063. https://doi.org/10.1534/genetics.108.099812

Wright, B., Farquharson, K. A., McLennan, E. A., Belov, K., Hogg, C. J., & Grueber, C. E. (2019). From reference genomes to population genomics: Comparing three reference-aligned reduced-representation sequencing pipelines in two wildlife species. BMC Genomics, 20, 453. https://doi.org/10.1186/s12864-019-5806-y

Wright, S. (1921). Systems of mating. I. The biometric relations between parent and offspring. Genetics, 6(2), 111–123. https://doi.org/10.1093/genetics/6.2.111

Wright, S. (1923). The theory of gene frequencies. American Naturalist, 57(649), 289–295. https://doi.org/10.1086/279872

Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 19(3), 395–420. https://doi.org/10.1111/j.1558-5646.1965.tb01731.x

Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: A tool for genome-wide complex trait analysis. The American Journal of Human Genetics, 88(1), 76–82. https://doi.org/10.1016/j.ajhg.2010.11.011

Zapata-Valenzuela, J., Whetten, R. W., Neale, D., McKeand, S., & Isik, F. (2013). Genomic estimated breeding values using genomic relationship matrices in a cloned population of loblolly pine. G3: Genes|Genomes|Genetics, 3(5), 909–919. https://doi.org/10.1534/g3.113.005143

Downloads

Published

2025-03-31

Issue

Section

Animal Science