Genome sequence variation in two subspecies of western honeybee, A.m.carnica and A.m.ligustica

Minja Zorc, Janko Bozic, Peter Dovc


Submitted 2020-08-09 | Accepted 2020-09-21 | Available 2020-12-01

Populations of western honeybee (Apis mellifera) show differences in morphology, physiology and behaviour as a result of adaptation to various habitats. A. m. carnica, which inhabits the South-East and Central Europe, and A. m. ligustica, which is endemic on Apennine peninsula, represent 2 closely related honeybee subspecies living in the neighbouring climatic regions. In the current study, 3,655,618 polymorphisms were identified from the whole genome sequences of 37 individual drone genomes, from A. m. carnica (n=27) and A. m. ligustica (n=10). The analysis revealed variation in genes involved in biological pathways associated with energy production and conversion, cell cycle and cytokinesis.

Keywords: A. m. carnica, A. m. ligustica, genomics, honeybee, whole genome sequencing


Boch, R. (1957). Rassenmässige Unterschiede bei den Tänzen der Honigbiene (Apis mellifica L.). Zeitschrift für vergleichende Physiologie, 40(3), 289-320.

Bozic, J. et al. (2016). Novel aspects in characterisation of Carniolan honey bee (Apis mellifera carnica, Pollmann 1879). Acta Agriculturae Slovenica, Supplement 5, 18-27.

Caron, D. M. and Connor, L. J. (2013). Honey Bee Biology and Beekeeping: Wicas Press.

Chan, Q. W. T. and Foster, L. J. (2008). Changes in protein expression during honey bee larval development. Genome Biology, 9(10), R156.

Cridland, J. M., Tsutsui, N. D. and Ramírez, S. R. (2017). The complex demographic history and evolutionary origin of the Western honey bee, Apis Mellifera. Genome Biology and Evolution, 9(2), 457-472.

Dall'Olio, R. et al. (2007). Genetic characterization of Italian honeybees, Apis mellifera ligustica, based on microsatellite DNA polymorphisms. Apidologie, 38(2), 207-217.

De la Rúa, P. et al. (2009). Biodiversity, conservation and current threats to European honeybees. Apidologie, 40(3), 263-284.

Engel, M. S. (1999). The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae; Apis). Journal of Hymenoptera Research, 8, 165-196.

Gissi, C., Iannelli, F. and Pesole, G. (2008). Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity, 101(4), 301-320.

Gonzalez, A. N., Ing, N. and Rangel, J. (2018). Upregulation of antioxidant genes in the spermathecae of honey bee (Apis mellifera) queens after mating. Apidologie, 49(2), 224-234.

Hoefer, I. and Lindauer, M. (1975). Das Lernverhalten zweier Bienenrassen unter veränderten Orientierungsbedingungen. Journal of Comparative Physiology, 99(2), 119-138.

Holzmann, J. et al. (2008). RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell, 135(3), 462-474.

Iqbal, J. et al. (2019). Olfactory associative behavioral differences in three honey bee Apis mellifera L. races under the arid zone ecosystem of central Saudi Arabia. Saudi Journal of Biological Sciences, 26(3), 563-568.

Isserlin, R. et al. (2014). Enrichment Map - a Cytoscape app to visualize and explore OMICs pathway enrichment results. F1000Research, 3, 141.

Jackman, J. E. and Alfonzo, J. D. (2013). Transfer RNA modifications: nature's combinatorial chemistry playground. Wiley Interdisciplinary Reviews RNA, 4(1), 35-48.

Kovac, H. et al. (2014). Metabolism and upper thermal limits of Apis mellifera carnica and A. m. ligustica. Apidologie, 45(6), 664-677.

Kriventseva, E. V. et al. (2019). OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Research, 47(D1), D807-D811.

Kunieda, T. et al. (2006). Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome. Insect Molecular Biology, 15(5), 563-576.

Le Conte, Y. and Navajas, M. (2008). Climate change: impact on honey bee populations and diseases. Revue Sentifique et technique, 27(2), 485-497, 499-510.

Li, H. and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760.

Li, J. et al. (2007). Proteomic analysis of royal jelly from three strains of Western Honeybees (Apis mellifera). Journal of Agricultural and Food Chemistry, 55(21), 8411-8422.

Okonechnikov, K., Conesa, A. and Garcia-Alcalde, F. (2016). Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics, 32(2), 292-294.

Patel, M. S. et al. (2014). The pyruvate dehydrogenase complexes: structure-based function and regulation. The Journal of Biological Chemistry, 289(24), 16615-16623.

Perham, R. N. (1991). Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry, 30(35), 8501-8512.

Personnic, N. et al. (2014). A role for Ral GTPase-activating protein subunit β in mitotic regulation. The FEBS Journal, 281(13), 2977-2989.

Raudvere, U. et al. (2019). g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Research, 47(W1), W191-W198.

Rinkevich, F. D. et al. (2015). Genetics, synergists, and age affect insecticide sensitivity of the honey bee, Apis mellifera. PloS One, 10(10), e0139841.

Ruttner, F. (1988). Biogeography and taxonomy of honeybees. Springer-Verlag, Berlin.

Sen, A. et al. (2016). Loss of the mitochondrial protein-only ribonuclease P complex causes aberrant tRNA processing and lethality in Drosophila. Nucleic Acids Research, 44(13), 6409-6422.

Shannon, P. et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498-2504.

Shirakawa, R. et al. (2009). Tuberous sclerosis tumor suppressor complex-like complexes act as GTPase-activating proteins for Ral GTPases. Journal of Biological Chemistry, 284(32), 21580-21588.

Singhi, P. et al. (2013). Pyruvate dehydrogenase-e1α deficiency presenting as recurrent demyelination: an unusual presentation and a novel mutation. JIMD Reports, 10, 107-111.

Todeschini, V. et al. (2017). In vitro study on the inhibition of enzymatic systems in Italian and Carniolan honey bees by piperonyl butoxide new derivatives. Bulletin of Insectology, 70, 237-244.

Vilardo, E. et al. (2012). A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase--extensive moonlighting in mitochondrial tRNA biogenesis. Nucleic Acids Research, 40(22), 11583-11593.

Wallberg, A. et al (2014). A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nature Genetics, 46(10), 1081-1088.

Webster, T. C. (2008). Honey Bee, Apis mellifera (Hymenoptera: Apidae). In J. L. Capinera (Ed.), Encyclopedia of Entomology (pp. 1835-1840). Dordrecht: Springer Netherlands.

Wragg, D. et al. (2016). Whole-genome resequencing of honeybee drones to detect genomic selection in a population managed for royal jelly. Scientific Reports, 6, 27168.

Full Text:



  • There are currently no refbacks.

Copyright (c) 2020 Acta Fytotechnica et Zootechnica

© Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources