Milk fat as a source of bioactive compounds

Simona Dudásová, Martina Miluchová, Michal Gábor


Received: 2021-05-17 | Accepted: 2021-07-08 | Available online: 2021-12-31

Milk fat is a source of not only nutritionally valuable but also biologically active ingredients that are involved in various regulatory processes, thus participating in a functioning organism. These compounds have been studied and various beneficial effects on the health and development of the organism have been described. Ingredients such as fatty acids (monounsaturated fatty acids, polyunsaturated fatty acids and conjugated linoleic acid) and phospholipids (glycerophospholipids and sphingolipids) may have a beneficial effect on human health or can prevent various diseases. Some candidate genes that are significantly involved in milk fat metabolisms, such as diacylglycerol O-acyltransferase 1 and stearoyl-CoA desaturase 1, thus contribute to the composition and concentration of the individual components of milk fat. This review deals with the composition of the collected bioactive components of milk fat and their impact on health and their potential to produce functional foods.

Keywords: milk fat, phospholipids, fatty acids, bioactive compounds


Argov-Argaman, N., Mida, K., Cohen, B. C., Visker, M. and Hettinga, K. (2013). Milk fat content and DGAT1 genotype determine lipid composition of the milk fat globule membrane. PLoS One, 8(7), e68707.

Arranz, E. and Corredig, M. (2017). Invited review: Milk phospholipid vesicles, their colloidal properties, and potential as delivery vehicles for bioactive molecules.  Journal of dairy science, 100(6), 4213–4222.

Bauman, D. E., Mather, I. H., Wall, R. J. and Lock, A. L. (2006). Major advances associated with the biosynthesis of milk. Journal of dairy science, 89(4), 1235–1243.

Bernard, L., Bonnet, M., Delavaud, C., Delosière, M., Ferlay, A., Fougère, H. and Graulet, B. (2018). Milk fat globule in ruminant: major and minor compounds, nutritional regulation and differences among species. European journal of lipid science and technology, 120(5), 1700039.

Bovenhuis, H., Visker, M. H. P. W., Poulsen, N. A., Sehested, J., Van Valenberg, H. J. F., van Arendonk, J. A. M. et al. (2016). Effects of the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral composition of dairy cattle milk. Journal of dairy science,  99(4), 3113–3123.

Calder, P. C. (2014). Very long chain omega‐3 (n‐3) fatty acids and human health. European journal of lipid science and technology, 116(10), 1280–1300.

Contarini, G. and Povolo, M. (2013). Phospholipids in milk fat: Composition, biological and technological significance, and analytical strategies. Int. J. Mol. Sci., 14, 2808–2831.

Cruz, V. A., Oliveira, H. R., Brito, L. F., Fleming, A., Larmer, S., Miglior, F. and Schenkel, F. S. (2019). Genome-Wide Association study for milk fatty acids in Holstein cattle accounting for the DGAT1 gene effect. Animals, 9(11), 997.

da Silva, M. S. and Rudkowska, I. (2015). Dairy nutrients and their effect on inflammatory profile in molecular studies. Molecular nutrition & food research, 59(7), 1249–1263.

Dachev, M., Bryndová, J., Jakubek, M., Moučka, Z. and Urban, M. (2021). The Effects of Conjugated Linoleic Acids on Cancer. Processes, 9(3), 454.

Den Hartigh, L. J. (2019). Conjugated linoleic acid effects on cancer, obesity, and atherosclerosis: A review of pre-clinical and human trials with current perspectives.  Nutrients,  11(2), 370.

El Roz, A., Bard, J. M., Huvelin, J. M. and Nazih, H. (2013). The anti-proliferative and pro-apoptotic effects of the trans9, trans11 conjugated linoleic acid isomer on MCF-7 breast cancer cells are associated with LXR activation. Prostaglandins, Leukotrienes and Essential Fatty Acids, 88(4), 265–272.

Fuke, G. and Nornberg, J. L. (2017). Systematic evaluation on the effectiveness of conjugated linoleic acid in human health. Critical reviews in food science and nutrition,  57(1), 1–7.

Gantner, V., Mijić, P., Baban, M., Škrtić, Z. and Turalija, A. (2015). The overall and fat composition of milk of various species. Mljekarstvo/Dairy, 65(4).

Glaser, C., Lattka, E., Rzehak, P., Steer, C. and Koletzko, B. 2011. Genetic variation in polyunsaturated fatty acid metabolism and its potential relevance for human development and health. Matern Child Nutr, 7, 27–40.

Hageman, J. H., Danielsen, M., Nieuwenhuizen, A. G., Feitsma, A. L. and Dalsgaard, T. K. (2019). Comparison of bovine milk fat and vegetable fat for infant formula: Implications for infant health. International Dairy Journal, 92, 37–49.

Hibbeln, J. R. and Gow, R. V. (2014). The potential for military diets to reduce depression, suicide, and impulsive aggression: a review of current evidence for omega-3 and omega-6 fatty acids. Military medicine, 179(11), 117–128.

Huang, Z., Brennan, C., Zhao, H., Guan, W., Mohan, M. S., Stipkovits, L. et al. (2020). Milk phospholipid antioxidant activity and digestibility: Kinetics of fatty acids and choline release. Journal of Functional Foods, 68, 103865.

Huang, Z., Zhao, H., Guan, W., Liu, J., Brennan, C., Kulasiri, D. and Mohan, M. S. (2019). Vesicle properties and health benefits of milk phospholipids: a review. Journal of Food Bioactives,  5, 31–42.

Ibeagha-Awemu, E. M., Akwanji, K. A., Beaudoin, F. and Zhao, X. (2014). Associations between variants of FADS genes and omega-3 and omega-6 milk fatty acids of Canadian Holstein cows. BMC Genetics, 15.

Küllenberg, D., Taylor, L. A., Schneider, M. and Massing, U. (2012). Health effects of dietary phospholipids. Lipids in health and disease, 11(1), 1–16.

Kumar, M., Ratwan, P. and Dahiya, S. P. (2020). Potential candidate gene markers for milk fat in bovines: A review. Indian Journal of Animal Sciences, 90(5), 667–671.

Larsson, S. C., Bergkvist, L. and Wolk, A. (2005). High-fat dairy food and conjugated linoleic acid intakes in relation to colorectal cancer incidence in the Swedish Mammography Cohort. The American journal of clinical nutrition, 82(4), 894–900.

Lecomte, M., Bourlieu, C., Meugnier, E., Penhoat, A., Cheillan, D., Pineau, G. et al. (2015). Milk polar lipids affect in vitro digestive lipolysis and postprandial lipid metabolism in mice. The Journal of nutrition, 145(8), 1770–1777.

Lee, J. M., Lee, H., Kang, S. and Park, W. J. (2016). Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances. Nutrients, 8(1), 23.

Li, C., Sun, D., Zhang, S., Liu, L., Alim, M.A. and Zhang, Q. (2016). A post‐GWAS confirming the SCD gene associated with milk medium‐and long‐chain unsaturated fatty acids in Chinese Holstein population. Animal genetics, 47(4), 483–490.

Li, X., Buitenhuis, A. J., Lund, M. S., Li, C., Sun, D., Zhang, Q. and Su, G. (2015). Joint genome-wide association study for milk fatty acid traits in Chinese and Danish Holstein populations. Journal of dairy science, 98(11), 8152–8163.

Liu, H., Radlowski, E. C., Conrad, M. S., Li, Y., Dilger, R. N. and Johnson, R. W. (2014). Early supplementation of phospholipids and gangliosides affects brain and cognitive development in neonatal piglets.  The Journal of nutrition,  144(12), 1903–1909.

Liu, Z., Rochfort, S. and Cocks, B. (2018). Milk lipidomics: What we know and what we don‘t. Progress in lipid research, 71, 70–85.

Lopez, C., Blot, M., Briard-Bion, V., Cirié, C. and Graulet, B. (2017). Butter serums and buttermilks as sources of bioactive lipids from the milk fat globule membrane: Differences in their lipid composition and potentialities of cow diet to increase n-3 PUFA. Food Research International, 100, 864–872.

Månsson, H. L. (2008). Fatty acids in bovine milk fat. Food & Nutrition Research, 52.

Markiewicz-Kęszycka, M., Czyżak-Runowska, G., Lipińska, P. and Wójtowski, J. (2013). Fatty acid profile of milk-a review. Bulletin of the Veterinary Institute in Pulawy, 57(2), 135–139.

Mcgowan, M. M., Eisenberg, B. L., Lewis, L. D., Froehlich, H. M., Wells, W. A., Eastman, A. and Kinlaw, W. B. (2013). A proof of principle clinical trial to determine whether conjugated linoleic acid modulates the lipogenic pathway in human breast cancer tissue. Breast cancer research and treatment, 138(1), 175–183.

Michalak, A., Mosińska, P. and Fichna, J. (2016). Polyunsaturated fatty acids and their derivatives: therapeutic value for inflammatory, functional gastrointestinal disorders, and colorectal cancer. Frontiers in pharmacology, 7, 459.

Moon, H. S. (2014). Biological effects of conjugated linoleic acid on obesity-related cancers.  Chemico-biological interactions, 224, 189–195.

Morris, C. A., Cullen, N. G., Glass, B. C., Hyndman, D. L., Manley, T. R., Hickey, S. M. and Lee, M. A. (2007). Fatty acid synthase effects on bovine adipose fat and milk fat. Mammalian Genome, 18(1), 64–74.

Nilsson, Å. and Duan, R. D. (2006). Absorption and lipoprotein transport of sphingomyelin. Journal of lipid research, 47(1), 154–171.

Norris, G. H., Jiang, C., Ryan, J., Porter, C. M. and Blesso, C. N. (2016). Milk sphingomyelin improves lipid metabolism and alters gut microbiota in high fat diet-fed mice. The Journal of nutritional biochemistry, 30, 93–101.

Ortega-Anaya, J. and Jiménez-Flores, R. (2019). Symposium review: The relevance of bovine milk phospholipids in human nutrition – Evidence of the effect on infant gut and brain development.  Journal of dairy science,  102(3), 2738–2748.

Ralston, J. C. and Mutch, D. M. (2015). SCD1 inhibition during 3T3-L1 adipocyte differentiation remodels triacylglycerol, diacylglycerol and phospholipid fatty acid composition. Prostaglandins, Leukotrienes and Essential Fatty Acids, 98, 29–37.

Sánchez-Juanes, F., Alonso, J. M., Zancada, L. and Hueso, P. (2009). Distribution and fatty acid content of phospholipids from bovine milk and bovine milk fat globule membranes. International Dairy Journal, 19(5), 273–278.

Smoczyński, M. (2017). Role of phospholipid flux during milk secretion in the mammary gland.  Journal of mammary gland biology and neoplasia, 22(2), 117–129.

Sprong, R. C., Hulstein, M. F. E. and van Der Meer, R. (2002). Bovine milk fat components inhibit food-borne pathogens. International Dairy Journal, 12(2–3), 209–215.

Ten Bruggencate, S. J., Frederiksen, P. D., Pedersen, S. M., Floris-Vollenbroek, E. G., Lucas-Van De Bos, E., van Hoffen, E. and Wejse, P. L. (2016). Dietary milk-fat-globule membrane affects resistance to diarrheagenic Escherichia coli in healthy adults in a randomized, placebo-controlled, double-blind study.  The Journal of nutrition, 146(2), 249–255.

Vanbergue, E., Peyraud, J. L., Guinard-Flament, J., Charton, C., Barbey, S., Lefebvre, R. et al. (2016). Effects of DGAT1 K232A polymorphism and milking frequency on milk composition and spontaneous lipolysis in dairy cows.  Journal of dairy science, 99(7), 5739–5749.

Verardo, V., Gómez-Caravaca, A. M., Arráez-Román, D. and Hettinga, K. (2017). Recent advances in phospholipids from colostrum, milk and dairy by-products. International journal of molecular sciences, 18(1), 173.

Wang, T., Lee, H. and Zhen, Y. (2018). Responses of MAC‐T Cells to Inhibited Stearoyl‐CoA Desaturase 1 during cis‐9, trans‐11 Conjugated Linoleic Acid Synthesis. Lipids, 53(6), 647– 652.

Yudin, N. S. and Voevoda, M. I. (2015). Molecular genetic markers of economically important traits in dairy cattle. Russian Journal of Genetics, 51(5), 506–517.

Zhang, C. M., Guo, Y. Q., Yuan, Z. P., Wu, Y. M., Wang, J. K., Liu, J. X. andZhu, W. Y. (2008). Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro. Animal Feed Science and Technology, 146(3–4), 259–269.

Full Text:



  • There are currently no refbacks.

Copyright (c) 2021 Acta Fytotechnica et Zootechnica

© Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources