Bioactive compounds and fatty acid profile of grape pomace

Patrícia Vašeková, Miroslav Juráček, Daniel Bíro, Milan Šimko, Branislav Gálik, Michal Rolinec, Ondrej Hanušovský, Renata Kolláthová, Eva Ivanišová


Article Details: Received: 2020-07-23 | Accepted: 2020-08-04 | Available online: 2020-12-31

The aims of experiment were to determinate the values of bioactive compounds and fatty acid profile in white dried grape pomace Vitis vinifera “Pinot Gris”. Grape pomace originated from winery of the University farm Kolíňany, centre Oponice. The dry matter and crude fat content was determined after the preparation of samples. The dried grape pomace contained 94.2% of dry matter and 8.40% of crude fat. This research was conducted on antiradical activity (DPPH), total polyphenols, total phelinolic acids, total flavanoids and fatty acid profile. The results confirmed that the grape pomace is considerable source of bioactive compounds, with high antioxidant activity, value of total phenolic acids and total polyphenols. From fatty acids profile are grape pomace significant source of polyunsaturated fatty acids, mainly essential linoleic acid (68.62 g 100 g-1 of fatty acids). They are characterized by wide ratio of n6/n3 fatty acids.

Keywords: grape by-product, fatty acid, bioactive compound, nutrition


ANTONIOLLI, A., FONTANA, A. R., PICCOLI, P. and BOTTINI, R. (2015). Characterization of polyphenols and evaluation of antioxidant capacity in grape pomace of the cv. Malbec. Food Chemistry, 178, 172–178.

BAYDAR, N. G., ÖZKAN, G. and YAŞAR, S. (2007). Evaluation of the antiradical and antioxidant potential of grape extracts. Food control, 18(9), 1131–1136.

BELURY, M. A., COLE, R. M., SNOKE, D. B., BANH, T. and ANGELOTTI, A. (2018). Linoleic acid, glycemic control and Type 2 diabetes. Prostaglandins, Leukotrienes and Essential Fatty Acids, 132, 30–33.

BRAGA, G. C., MELO, P. S., BERGAMASCHI, K. B., TIVERON, A. P., MASSARIOLI, A. P. and ALENCAR, S. M. D. (2016). Extraction yield, antioxidant activity and phenolics from grape, mango and peanut agro-industrial by-products. Ciência Rural, 46(8), 1498–1504.

CAPCAROVÁ, M., KALAFOVÁ, A., SÍLEŠOVÁ, A., SCHNEIDGENOVÁ, M. and PETRUŠKA, P. (2017). The effect of quercetin on some hematological parameters of rabbits. Slovak society for agricultural, forestry, food and veterinary sciences at the slovak academy of sciences. Nitra: SUA in Nitra (pp. 23–35). In Slovak.

EINBOND, L. S., REYNERTSON, K. A., LUO, X. D., BASILE, M. J. and KENNELLY, E. J. (2004). Anthocyanin antioxidants from edible fruits. Food chemistry, 84(1), 23–28.

FAO, F. Agriculture Organization of the United Nations, 2010. Fats and fatty acids in human nutrition. Report of an expert consultation. Rome. consultado el, 30, 91.

FARMAKOPEA Polska, V. tom V. PET Farm., Warszawa, 1999.

FARVID, M. S., DING, M., PAN, A., SUN, Q., CHIUVE, S. E., STEFFEN, L. M. and HU, F. B. (2014). Dietary linoleic acid and risk of coronary heart disease: a systematic review and metaanalysis of prospective cohort studies. Circulation, 130(18), 1568–1578.

HABÁNOVÁ, M., HOLOVIČOVÁ, M., GAŽAROVÁ, M., KOPČEKOVÁ, J. and MRÁZOVÁ, J. (2019). Content of selected bioactive substances in bilberries from various geographical areas. Scientific works of the Department of Crop Production. Nitra: SUA in Nitra (pp. 50–57). In Slovak.

CHAMORRO, S., VIVEROS, A., ALVAREZ, I., VEGA, E. and BRENES, A. (2012). Changes in polyphenol and polysaccharide content of grape seed extract and grape pomace after enzymatic treatment. Food Chemistry, 133(2), 308–314.

CHEDEA, V. S., PELMUS, R. S., LAZAR, C., PISTOL, G. C., CALIN, L. G., TOMA, S. M. and TARANU, I. (2017). Effects of a diet containing dried grape pomace on blood metabolites and milk composition of dairy cows. Journal of the Science of Food and Agriculture, 97(8), 2516–2523.

IORA, S. R., MACIEL, G. M., ZIELINSKI, A. A., DA SILVA, M. V., PONTES, P. V. D. A., HAMINIUK, C. W. and GRANATO, D. (2015). Evaluation of the bioactive compounds and the antioxidant capacity of grape pomace. International Journal of Food Science & Technology, 50(1), 62–69.

ISHIDA, K., KISHI, Y., OISHI, K., HIROOKA, H. and KUMAGAI, H. (2015). Effects of feeding polyphenol‐rich winery wastes on digestibility, nitrogen utilization, ruminal fermentation, antioxidant status and oxidative stress in wethers. Animal Science Journal, 86(3), 260–269.

IVANIŠOVÁ, E., KÁNTOR, A. and KAČÁNIOVÁ, M. (2019). Antioxidant Activity and Total Polyphenol Content of Different Varieties of Grape from the Small Carpathians Wine Region of Slovakia. Scientific Papers: Animal Science & Biotechnologies/ Lucrari Stiintifice: Zootehnie si Biotehnologii, 52(2).

IVANKO, Š. (2012). Actual questions to solve deficiencies of omega-3 polyunsaturated fatty acids in animal and human nutrition. Lazar days of nutrition and veterinary ditetics X. Košice: UVMP in Košice (pp. 115–121). In Slovak.

JURÁČEK, M., BÍRO, D., ŠIMKO, M., GÁLIK, B., ROLINEC, M., HANUŠOVSKÝ, O. and BARANTAL, S. (2019). Fermentation quality and dry matter losses of grape pomace silages with urea addition. Agriculture & Food, 7,173–178.

JURÍKOVÁ, T., FATRCOVÁ-ŠRAMKOVÁ, K. and SCHWARZOVÁ, M. (2019). Lesser known fruit as a source of valuable bioactive substances. Agrobiodiversity for improve the nutrition, health and quality of human and bees life. Nitra: SUA in Nitra (p. 94).

KOLLÁTHOVÁ, R., HANUŠOVSKÝ, O., GÁLIK, B., BÍRO, D., ŠIMKO, M., JURÁČEK, M. and GIERUS, M. (2020). Fatty acid profile analysis of grape by-products from Slovakia and Austria. Acta Fytotechnica et Zootechnica, 23(2).

LAVEE, S. (2000). Grapevine (Vitis vinifera) growth and performance in warm climates. In Temperate Fruit Crops in Warm Climates (pp. 343–366). Springer, Dordrecht.

LENIGHAN, Y. M., McNULTY, B. A. and ROCHE, H. M. (2019, May). Dietary fat composition: replacement of saturated fatty acids with PUFA as a public health strategy, with an emphasis on α-linolenic acid. The Proceedings of the Nutrition Society, 78(2), 234–245). LI, K., BRENNAN, L.,

BLOOMFIELD, J. F., DUFF, D. J., MCNULTY, B. A., FLYNN, A. and NUGENT, A. P. (2018). Adiposity associated plasma linoleic acid is related to demographic, metabolic health and haplotypes of FADS1/2 genes in Irish adults. Molecular nutrition & food research, 62(7), 1700785.

LIBRÁN CUERVAS-MONS, C. M., MAYOR LÓPEZ, L., GARCÍA CASTELLÓ, E. M. and VIDAL BROTONS, D. J. (2013). Polyphenol extraction from grape wastes: Solvent and pH effect. Agricultural Sciences, 4(9B), 56–62.

MANCA, M. L., MARONGIU, F., CASTANGIA, I., CATALÁNLATORRE, A., CADDEO, C., BACCHETTA, G. and MANCONI, M. (2016). Protective effect of grape extract phospholipid vesicles against oxidative stress skin damages. Industrial Crops and Products, 83, 561–567.

MICHALCOVA, K., ROYCHOUDHURY, S., HALENAR, M., TVRDA, E., KOVACIKOVA, E., VASICEK, J. and KOLESAROVA, A. (2019). In vitro response of human ovarian cancer cells to dietary bioflavonoid isoquercitrin. Journal of Environmental Science and Health, Part B, 54(9), 752–757.

OZDEMIR, G., KITIR, N., TURAN, M. and OZLU, E. (2018). Impacts of organic and organo-mineral fertilizers on total phenolic, flavonoid, anthocyanin and antiradical activity of okuzgozu (Vitis vinifera L.) grapes. Acta Scientiarum Polonorum Hortorum Cultus, 17(3), 91–100.

PARRY, J. HAIWEN, L., JIA-REN, L., KEQUAN, Z., LEI, Z. and SHUXIN, R. (2011). Antioxidant activity, antiproliferation of colon cancer cells, and chemical composition of grape pomace. Food and Nutrition Sciences, 2011.

PASTRANA-BONILLA, E., AKOH, C. C., SELLAPPAN, S. and KREWER, G. (2003). Phenolic content and antioxidant capacity of muscadine grapes. Journal of agricultural and food chemistry, 51(18), 5497–5503.

PINTAĆ, D., MAJKIĆ, T., TOROVIĆ, L., ORČIĆ, D., BEARA, I., SIMIN, N. and LESJAK, M. (2018). Solvent selection for efficient extraction of bioactive compounds from grape pomace. Industrial Crops and Products, 111, 379–390.

POUDEL, P. R., TAMURA, H., KATAOKA, I. and MOCHIOKA, R. (2008). Phenolic compounds and antioxidant activities of skins and seeds of five wild grapes and two hybrids native to Japan. Journal of Food Composition and Analysis, 21(8), 622–625.

RIBEIRO, L. F., RIBANI, R. H., FRANCISCO, T. M. G., SOARES, A. A., PONTAROLO, R. and HAMINIUK, C. W. I. (2015). Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses. Journal of chromatography B, 1007, 72–80.

ROCKENBACH, I. I., RODRIGUES, E., GONZAGA, L. V., CALIARI, V., GENOVESE, M. I., GONÇALVES, A. E. D. S. S. and FETT, R. (2011). Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chemistry, 127(1), 174–179.

RODRÍGUEZ-MORGADO, B., CANDIRACCI, M., SANTAMARÍA, C., REVILLA, E., GORDILLO, B., PARRADO, J. and CASTAÑO, A. (2015). Obtaining from grape pomace an enzymatic extract with anti-inflammatory properties. Plant foods for human nutrition, 70(1), 42–49.

RUBERTO, G., RENDA, A., DAQUINO, C., AMICO, V., SPATAFORA, C., TRINGALI, C. and De TOMMASI, N. (2007). Polyphenol constituents and antioxidant activity of grape pomace extracts from five Sicilian red grape cultivars. Food Chemistry, 100(1), 203–210.

SÁNCHEZ‐MORENO, C., LARRAURI, J. A. and SAURA‐ CALIXTO, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76(2), 270–276.

SINGLETON, V. L. and ROSSI, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144–158.

SOARES, S. E. (2002). Ácidos fenólicos como antioxidantes. Revista de nutrição, 15(1), 71–81. SPIGNO, G., TRAMELLI, L. and De FAVERI, D. M. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of food engineering, 81(1), 200–208.

VATAI, T., ŠKERGET, M. and KNEZ, Ž. (2009). Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide. Journal of Food Engineering, 90(2), 246–254.

VAUZOUR, D., RODRIGUEZ-MATEOS, A., CORONA, G., ORUNA-CONCHA, M. J. and SPENCER, J. P. (2010). Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients, 2(11), 1106–1131.

WILLETT, W. C. (2002). Balancing life-style and genomics research for disease prevention. Science, 296(5568), 695–698.

WU, J. H., LEMAITRE, R. N., KING, I. B., SONG, X., PSATY, B. M., SISCOVICK, D. S. and MOZAFFARIAN, D. (2014). Circulating omega-6 polyunsaturated fatty acids and total and causespecific mortality: the Cardiovascular Health Study. Circulation, 130(15), 1245–1253.

XU, C., YAGIZ, Y., BOREJSZA-WYSOCKI, W., LU, J., GU, L., RAMÍREZ-RODRIGUES, M. M. and MARSHALL, M. R. (2014). Enzyme release of phenolics from muscadine grape (Vitis rotundifolia Michx.) skins and seeds. Food chemistry, 157, 20–29.

YI, C., SHI, J., KRAMER, J., XUE, S., JIANG, Y., ZHANG, M. and POHORLY, J. (2009). Fatty acid composition and phenolic antioxidants of winemaking pomace powder. Food Chemistry, 114(2), 570–576.

Full Text:



  • There are currently no refbacks.

Copyright (c) 2020 Acta Fytotechnica et Zootechnica

© Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources